OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 27 — Sep. 20, 2011
  • pp: 5256–5262

Manipulating wavelength-selective emission with heterogeneous photonic crystals

Hamza Kurt  »View Author Affiliations


Applied Optics, Vol. 50, Issue 27, pp. 5256-5262 (2011)
http://dx.doi.org/10.1364/AO.50.005256


View Full Text Article

Enhanced HTML    Acrobat PDF (1073 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The usual near-field radiation profile of a light beam emanating from a photonic crystal waveguide (PCW) has a main lobe at the center line of the waveguide. However, a centrally symmetric profile for the emission pattern with two sidelobes can be required in some applications, e.g., Y-type power dividers, wavelength multiplexers, and semiconductor lasers. With such motivations in mind, we present the design of a compact structure that deflects the beam propagation direction in this manner. The idea utilizes the manipulation of the dispersion diagram of cascaded photonic crystals by exploiting the bandgap and self-collimation properties. The waveguide mode in the PCW can be transformed from a propagating mode into a diffusive one by altering the filling factor, which, in turn, leads to off-axis light emission. By using the finite-difference time-domain method, we show that the emission takes place into free space at the inclined output surfaces of the PCW with deviation angles of ± 45 ° .

© 2011 Optical Society of America

OCIS Codes
(230.1360) Optical devices : Beam splitters
(130.5296) Integrated optics : Photonic crystal waveguides
(230.5298) Optical devices : Photonic crystals
(230.7408) Optical devices : Wavelength filtering devices

ToC Category:
Integrated Optics

History
Original Manuscript: June 6, 2011
Revised Manuscript: August 8, 2011
Manuscript Accepted: August 8, 2011
Published: September 14, 2011

Citation
Hamza Kurt, "Manipulating wavelength-selective emission with heterogeneous photonic crystals," Appl. Opt. 50, 5256-5262 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-27-5256


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062(1987). [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489(1987). [CrossRef] [PubMed]
  3. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (2nd ed., Princeton Univ. Press, 2008).
  4. M. Loncar, T. Doll, J. Vuckovic, and A. Scherer, “Design and fabrication of silicon photonic crystal optical waveguides,” J. Lightwave Technol. 18, 1402–1411 (2000). [CrossRef]
  5. A. Mekis, J. C. Chen, I. Kurand, S. Fan, P. R. Villeneuve, and J. D. Joannopolous, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996). [CrossRef] [PubMed]
  6. H. Kurt and D. S. Citrin, “Photonic-crystal heterostructure waveguides,” IEEE J. Quantum Electron. 43, 78–84 (2007). [CrossRef]
  7. A. Talneau, L. Le Gouezigou, N. Bouadma, M. Agio, M. Kafesaki, and C. M. Soukoulis, “Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 micrometers,” Appl. Phys. Lett. 80, 547–549 (2002). [CrossRef]
  8. H. Kurt, I. H. Giden, and K. Ustun, “Highly efficient and broadband light transmission in 90° nanophotonic wire waveguide bends,” J. Opt. Soc. Am. B 28, 495–501 (2011). [CrossRef]
  9. P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 92, 113903 (2004). [CrossRef] [PubMed]
  10. E. Moreno, F. J. García-Vidal, and L. Martín-Moreno, “Enhanced transmission and beaming of light via photonic crystal surface modes,” Phys. Rev. B 69, 121402 (2004). [CrossRef]
  11. S. K. Morrison and Y. S. Kivshar, “Engineering of directional emission from photonic crystal waveguides,” Appl. Phys. Lett. 86, 081110 (2005). [CrossRef]
  12. D. Tang, L. Chen, and W. Ding, “Efficient beaming from photonic crystal waveguides via self-collimation effect,” Appl. Phys. Lett. 89, 131120 (2006). [CrossRef]
  13. I. Bulu, H. Caglayan, and E. Ozbay, “Beaming of light and enhanced transmission via surface modes of photonic crystals,” Opt. Lett. 30, 3078–3080 (2005). [CrossRef] [PubMed]
  14. C.-C. Chen, T. Pertsch, R. Iliev, F. Lederer, and A. Tünnermann, “Directional emission from photonic crystal waveguides,” Opt. Express 14, 2423–2428 (2006). [CrossRef] [PubMed]
  15. Y. Zhang, Y. Zhang, and B. Li, “Highly-efficient directional emission from photonic crystal waveguides for coupling of freely propagated terahertz waves into Si slab waveguides,” Opt. Express 15, 9281–9286 (2007). [CrossRef] [PubMed]
  16. E. H. Khoo, A. Q. Liu, T. H. Cheng, J. Li, and D. Pinjala, “Light focusing via Rowland concave surface of photonic crystal,” Appl. Phys. Lett. 91, 221105 (2007). [CrossRef]
  17. H. Kurt, “Theoretical study of directional emission enhancement from photonic crystal waveguides with tapered exits,” IEEE Photon. Technol. Lett. 20, 1682–1684 (2008). [CrossRef]
  18. H. Kurt, “The directional emission sensitivity of photonic crystal waveguides to air holes removal,” Appl. Phys. B 95, 341–344 (2009). [CrossRef]
  19. H. Kurt, “Limited-diffraction light propagation with axicon-shape photonic crystals,” J. Opt. Soc. Am. B 26, 981–986(2009). [CrossRef]
  20. S. Morrison and Y. Kivshar, “Observation of enhanced beaming from photonic crystal waveguides,” Appl. Phys. B 94, 149–153 (2009). [CrossRef]
  21. K. Guven and E. Ozbay, “Directivity enhancement and deflection of the beam emitted from a photonic crystal waveguide via defect coupling,” Opt. Express 15, 14973–14978(2007). [CrossRef] [PubMed]
  22. S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric structure surface gratings,” Appl. Phys. Lett. 90, 051113 (2007). [CrossRef]
  23. D.-Z. Lin, T.-D. Cheng, C.-K. Chang, J.-T. Yeh, J.-M. Liu, C.-S. Yeh, and C.-K. Lee, “Directional light beaming control by a subwavelength asymmetric surface structure,” Opt. Express 15, 2585–2591 (2007). [CrossRef] [PubMed]
  24. H. Caglayan, I. Bulu, and E. Ozbay, “Off-axis directional beaming via photonic crystal surface modes,” Appl. Phys. Lett. 92, 092114 (2008). [CrossRef]
  25. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200(1994). [CrossRef]
  26. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966). [CrossRef]
  27. A. Taflove, Computational Electromagnetics: The Finite-Difference Time-Domain Method (Artech House, 1995).
  28. R. K. Sinha and S. Rawal, “Modeling and design of 2D photonic crystal based Y type dual band wavelength demultiplexer,” Opt. Quantum Electron. 40, 603–613 (2008). [CrossRef]
  29. F. S.-S. Chien, S.-C. Cheng, Y.-J. Hsu, and W.-F. Hsieh, “Dual-band multiplexer/demultiplexer with photonic-crystal-waveguide couplers for bidirectional communications,” Opt. Commun. 266, 592–597 (2006). [CrossRef]
  30. H. Kurt, K. Ustun, and L. Ayas, “Study of different spectral regions and delay bandwidth relation in slow light photonic crystal waveguides,” Opt. Express 18, 26965–26977 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited