OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 27 — Sep. 20, 2011
  • pp: 5287–5290

Optical bistability in metal-insulator-metal plasmonic waveguide with nanodisk resonator containing Kerr nonlinear medium

Guoxi Wang, Hua Lu, Xueming Liu, Yongkang Gong, and Leiran Wang  »View Author Affiliations

Applied Optics, Vol. 50, Issue 27, pp. 5287-5290 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (426 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We numerically investigate the optical bistability effect in the metal-insulator-metal waveguide with a nanodisk resonator containing a Kerr nonlinear medium. It is found that the increase of the refractive index, which is induced by enhancing the incident intensity, can cause a redshift for the resonance wavelength. The local resonant field excited in the nanodisk cavity can significantly increase the Kerr nonlinear effect. In addition, an obvious bistability loop is observed in the proposed structure. This nonlinear structure can find important applications for all-optical switching in highly integrated optical circuits.

© 2011 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(140.4780) Lasers and laser optics : Optical resonators
(190.1450) Nonlinear optics : Bistability
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

Original Manuscript: April 22, 2011
Revised Manuscript: June 19, 2011
Manuscript Accepted: July 28, 2011
Published: September 15, 2011

Guoxi Wang, Hua Lu, Xueming Liu, Yongkang Gong, and Leiran Wang, "Optical bistability in metal-insulator-metal plasmonic waveguide with nanodisk resonator containing Kerr nonlinear medium," Appl. Opt. 50, 5287-5290 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Zia, J. A. Schuller, and M. L. Brongersma, “Plasmonics: The next chip-scale technology,” Mater. Today 9, 20–27 (2006). [CrossRef]
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef] [PubMed]
  3. Y. Gong, L. Wang, X. Hu, X. Li, and X. Liu, “Broad-bandgap and low-sidelobe surface plasmon polariton reflector with Bragg-grating-based MIM waveguide,” Opt. Express 17, 13727–13736 (2009). [CrossRef] [PubMed]
  4. J. Liu, L. Wang, M. He, W. Huang, D. Wang, B. Zou, and S. Wen, “A wide bandgap plasmonic Bragg reflector,” Opt. Express 16, 4888–4894 (2008). [CrossRef] [PubMed]
  5. Z. H. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007). [CrossRef]
  6. G. Wang, H. Lu, X. Liu, D. Mao, and L. Duan, “Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime,” Opt. Express 19, 3513–3518 (2011). [CrossRef] [PubMed]
  7. J. Tao, X. Huang, and J. Zhu, “A wavelength demultiplexing structure based on metal-dielectric-metal plasmonic nano-capillary resonators,” Opt. Express 18, 11111–11116 (2010). [CrossRef] [PubMed]
  8. H. Lu, X. M. Liu, D. Mao, L. R. Wang, and Y. K. Gong, “Tunable band-pass plasmonic waveguide filters with nanodisk resonators,” Opt. Express 18, 17922–17927 (2010). [CrossRef] [PubMed]
  9. Y. Gong, X. Liu, and L. Wang, “High channel-count plasmonic filter with the metal-insulator-metal Fibonacci-sequence gratings,” Opt. Lett. 35, 285–287 (2010). [CrossRef] [PubMed]
  10. M. Pu, N. Yao, C. Hu, X. Xin, Z. Zhao, C. Wang, and X. Luo, “Directional coupler and nonlinear Mach-Zehnder interferometer based on metal-insulator-metal plasmonic waveguide,” Opt. Express 18, 21030–21037 (2010). [CrossRef] [PubMed]
  11. B. Wang and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29, 1992–1994 (2004). [CrossRef] [PubMed]
  12. H. Gao, H. Shi, C. Wang, C. Du, X. Luo, Q. Deng, Y. Lv, X. Lin, and H. Yao, “Surface plasmon polariton propagation and combination in Y-shaped metallic channels,” Opt. Express 13, 10795–10800 (2005). [CrossRef] [PubMed]
  13. H. Zhao, X. Guang, and J. Huang, “Novel optical directional coupler based on surface plasmon polaritons,” Physica E 40, 3025–3029 (2008). [CrossRef]
  14. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005). [CrossRef]
  15. G. Tremblay and Y. L. Sheng, “Improving imaging performance of a metallic superlens using the long-range surface plasmon polariton mode cutoff technique,” Appl. Opt. 49, A36–A41 (2010). [CrossRef] [PubMed]
  16. K. Donghyun, “Effect of the azimuthal orientation on the performance of grating-coupled surface-plasmon resonancebiosensors,” Appl. Opt. 44, 3218–3223 (2005). [CrossRef]
  17. W. Kuo and C. Chang, “Phase detection sensitivity enhancement of surface plasmon resonance sensor in a heterodyne interferometer system,” Appl. Opt. 50, 1345–1349 (2011). [CrossRef] [PubMed]
  18. I. V. Kabakova, C. M. de Sterke, and B. J. Eggleton, “Performance of field-enhanced optical switching in fiber Bragg gratings,” J. Opt. Soc. Am. B 27, 1343–1352 (2010). [CrossRef]
  19. H. Chen, J. Su, J. Wang, and X. Zhao, “Optically-controlled high-speed terahertz wave modulator based on nonlinear photonic crystals,” Opt. Express 19, 3599–3603 (2011). [CrossRef] [PubMed]
  20. F. R. Jeffrey and W. S. Steven, “The impact of nonlinearity on degenerate parametric amplifiers,” Appl. Phys. Lett. 96, 234101 (2010). [CrossRef]
  21. C. Min, P. Wang, X. Jiao, Y. Deng, and H. Ming, “Optical bistability in subwavelength metallic grating coated by nonlinear material,” Opt. Express 15, 12368–12373 (2007). [CrossRef] [PubMed]
  22. A. V. Krasavin and A. V. Zayats, “Silicon-based plasmonic waveguides,” Opt. Express 18, 11791–11799 (2010). [CrossRef] [PubMed]
  23. C. Min, P. Wang, X. Jiao, Y. Deng, and H. Ming, “Beam manipulating by metallic nano-optic lens containing nonlinear media,” Opt. Express 15, 9541–9546 (2007). [CrossRef] [PubMed]
  24. J. A. Porto, L. Martin-Moreno, and F. J. Garcia-Vidal, “Optical bistability in subwavelength slit apertures containing nonlinear media,” Phys. Rev. B 70, 081402(R) (2004). [CrossRef]
  25. G. Wurtz, R. Pollard, and A. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97, 057402 (2006). [CrossRef] [PubMed]
  26. C. Min, P. Wang, C. Chen, Y. Deng, Y. Lu, H. Ming, T. Ning, Y. Zhou, and G. Yang, “All-optical switching in subwavelength metallic grating structure containing nonlinear optical materials,” Opt. Lett. 33, 869–871 (2008). [CrossRef] [PubMed]
  27. J. Chen, P. Wang, X. Wang, Y. Lu, R. Zheng, H. Ming, and Q. Zhan, “Optical bistability enhanced by highly localized bulk plasmon polariton modes in subwavelength metal-nonlinear dielectric multilayer structure,” Appl. Phys. Lett. 94, 081117(2009). [CrossRef]
  28. J. W. Mu and W. P. Huang, “A low-loss surface plasmonic Bragg grating,” J. Lightwave Technol. 27, 436–439 (2009). [CrossRef]
  29. J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express 16, 413–425 (2008). [CrossRef] [PubMed]
  30. Y. Shen and G. Wang, “Optical bistability in metal gap waveguide nanocavities,” Opt. Express 16, 8421–8426 (2008). [CrossRef] [PubMed]
  31. H. Lu, X. Liu, L. Wang, Y. Gong, and D. Mao, “Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator,” Opt. Express 19, 2910–2915 (2011). [CrossRef] [PubMed]
  32. X. Lin and X. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett. 33, 2874–2876 (2008). [CrossRef] [PubMed]
  33. T. Wang, X. Wen, C. Yin, and H. Wang, “The transmission characteristics of surface plasmon polaritons in ring resonator,” Opt. Express 17, 24096–24101 (2009). [CrossRef]
  34. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).
  35. Z. Zhong, Y. Xu, S. Lan, Q. Dai, and L. Wu, “Sharp and asymmetric transmission response in metal-dielectric-metal plasmonic waveguides containing Kerr nonlinear media,” Opt. Express 18, 79–86 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited