OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 27 — Sep. 20, 2011
  • pp: 5329–5337

Diffusion dynamics of small molecules from mesoporous silicon films by real-time optical interferometry

Jeremy W. Mares and Sharon M. Weiss  »View Author Affiliations


Applied Optics, Vol. 50, Issue 27, pp. 5329-5337 (2011)
http://dx.doi.org/10.1364/AO.50.005329


View Full Text Article

Enhanced HTML    Acrobat PDF (811 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Time-dependent laser reflectometry measurements are presented as a means to rigorously characterize analyte diffusion dynamics of small molecules from mesoporous silicon (PSi) films for drug delivery and membrane physics applications. Calculations based on inclusion of a spatially and temporally dependent solute concentration profile in a one-dimensional Fickian diffusion flow model are performed to determine the diffusion coefficients for the selected prototypical polar species, sucrose (340 Da), exiting from PSi films. The diffusion properties of the molecules depend on both PSi pore size and film thickness. For films with average pore diameters between 10 30 nm and film thicknesses between 300 900 nm , the sucrose diffusion coefficient can be tuned between approximately 100 and 550 μm 2 / s . Extensions of the real-time measurement and modeling approach for determining the diffusivity of small molecules that strongly interact with and corrode the internal surfaces of PSi films are also discussed.

© 2011 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.5700) Instrumentation, measurement, and metrology : Reflection
(160.0160) Materials : Materials
(310.0310) Thin films : Thin films
(310.6860) Thin films : Thin films, optical properties
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: June 2, 2011
Manuscript Accepted: August 3, 2011
Published: September 16, 2011

Citation
Jeremy W. Mares and Sharon M. Weiss, "Diffusion dynamics of small molecules from mesoporous silicon films by real-time optical interferometry," Appl. Opt. 50, 5329-5337 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-27-5329


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. G. Cullis, L. T. Canham, and P. D. J. Calcott, “The structural and luminescence properties of porous silicon,” J. Appl. Phys. 82, 909–965 (1997). [CrossRef]
  2. H. Föll, M. Christophersen, J. Carstensen, and G. Hasse, “Formation and application of porous silicon,” Mat. Sci. Eng. R 39, 93–141 (2002). [CrossRef]
  3. G. Rong, A. Najmaie, J. E. Sipe, and S. M. Weiss, “Nanoscale porous silicon waveguide for label-free DNA sensing,” Biosens. Bioelectron. 23, 1572–1576 (2008). [CrossRef] [PubMed]
  4. V. S. Y. Lin, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278, 840–843 (1997). [CrossRef] [PubMed]
  5. M. P. Stewart and J. M. Buriak, “Chemical and biological applications of porous silicon technology,” Adv. Mater. 12, 859–869 (2000). [CrossRef]
  6. V. Agarwal and J. A. del Rio, “Tailoring the photonic band gap of a porous silicon dielectric mirror,” Appl. Phys. Lett. 82, 1512–1514 (2003). [CrossRef]
  7. A. Loni, L. T. Canham, M. G. Berger, R. Arens-Fischer, H. Munder, H. Luth, H. F. Arrand, and T. M. Benson, “Porous silicon multilayer optical waveguides,” Thin Solid Films 276, 143–146 (1996). [CrossRef]
  8. S. M. Weiss and P. M. Fauchet, “Porous silicon one-dimensional photonic crystals for optical signal modulation,” IEEE J. Quantum Electron. 12, 1514–1519 (2006). [CrossRef]
  9. A. Richter, P. Steiner, F. Kozlowski, and W. Lang, “Current-induced light emission from a porous silicon device,” IEEE Electron. Dev. Lett. 12, 691–692 (1991). [CrossRef]
  10. E. J. Anglin, L. Cheng, W. R. Freeman, and M. J. Sailor, “Porous silicon in drug delivery devices and materials,” Adv. Drug Deliv. Rev. 60, 1266–1277 (2008). [CrossRef] [PubMed]
  11. J.-H. Park, L. Gu, G. von Maltzahn, E. Ruoslahti, S. N. Bhatia, and M. J. Sailor, “Biodegradable luminescent porous silicon nanoparticles for in vivo applications,” Nat. Mater. 8, 331–336 (2009). [CrossRef] [PubMed]
  12. J. Salonen, L. Laitinen, A. M. Kaukonen, J. Tuura, M. Björkqvist, T. Heikkilä, K. Vähä-Heikkilä, J. Hirvonen, and V. P. Lehto, “Mesoporous silicon microparticles for oral drug delivery: loading and release of five model drugs,” J. Controlled Release 108, 362–374 (2005). [CrossRef]
  13. S. C. Bayliss, R. Heald, D. I. Fletcher, and L. D. Buckberry, “The culture of mammalian cells on nanostructured silicon,” Adv. Mater. 11, 318–321 (1999). [CrossRef]
  14. L. Canham, “Porous silicon as a therapeutic biomaterial,” in Proceedings of the 1st Annual International Conference on Microtechnologies in Medicine and Biology (IEEE, 2000), pp. 109–112.
  15. L. Canham, Properties of Porous Silicon (Institution of Engineering and Technology, 1997).
  16. R. L. Smith and S. D. Collins, “Porous silicon formation mechanisms,” J. Appl. Phys. 71, R1–R22 (1992). [CrossRef]
  17. V. Lemaire, J. Bélair, and P. Hildgen, “Structural modeling of drug release from biodegradable porous matrices based on a combined diffusion/erosion process,” Int. J. Pharm. 258, 95–107 (2003). [CrossRef] [PubMed]
  18. R. Valiullin, P. Kortunov, J. Kärger, and V. Timoshenko, “Concentration-dependent self-diffusion of adsorbates in mesoporous materials,” Magn. Reson. Imag. 23, 209–214 (2005). [CrossRef]
  19. K. Malek and M.-O. Coppens, “Pore roughness effects on self- and transport diffusion in nanoporous materials,” Colloids Surf. A 206, 335–348 (2002). [CrossRef]
  20. K. Malek and M.-O. Coppens, “Knudsen self- and Fickian diffusion in rough nanoporous media,” J. Chem. Phys. 119, 2801–2811 (2003). [CrossRef]
  21. J. D. Ryckman, M. Liscidini, J. E. Sipe, and S. M. Weiss, “Direct imprinting of porous substrates: a rapid and low-cost approach for patterning porous nanomaterials,” Nano Lett. 11, 1857–1862 (2010). [CrossRef] [PubMed]
  22. Y.-C. Li and P. J. Cleall, “Analytical solutions for contaminant diffusion in double-layered porous media,” J. Geotech. Geoenviron. Eng. 136, 1542–1554 (2010). [CrossRef]
  23. C. Liu and W. P. Ball, “Analytical modeling of diffusion-limited contamination and decontamination in a two-layer porous medium,” Adv. Water Res. 21, 297–313 (1998). [CrossRef]
  24. S. Cruz, A. Honig-d’Orville, and J. Muller, “Fabrication and optimization of porous silicon substrates for diffusion membrane applications,” J. Electrochem. Soc. 152, C418–C424 (2005). [CrossRef]
  25. C. Barnes, “Diffusion through a membrane,” Physics 5, 4–8 (1934). [CrossRef]
  26. M. G. Davidson and W. M. Deen, “Hindered diffusion of water-soluble macromolecules in membranes,” Macromolecules 21, 3474–3481 (1988). [CrossRef]
  27. P. Allcock and P. A. Snow, “Time-resolved sensing of organic vapors in low modulating porous silicon dielectric mirrors,” J. Appl. Phys. 90, 5052–5057 (2001). [CrossRef]
  28. E. Llobet, X. Vilanova, J. Brezmes, J. E. Sueiras, and X. Correig, “Transient response of thick-film tin oxide gas-sensors to multicomponent gas mixtures,” Sens. Actuators B 47, 104–112 (1998). [CrossRef]
  29. K. Ohta and H. Ishida, “Matrix formalism for calculation of electric field intensity of light in stratified multilayered films,” Appl. Opt. 29, 1952–1959 (1990). [CrossRef] [PubMed]
  30. A. Navid and L. Pilon, “Effect of polarization and morphology on the optical properties of absorbing nanoporous thin films,” Thin Solid Films 516, 4159–4167 (2008). [CrossRef]
  31. We note that the use of the Bruggeman approximation rather than the parallel approximation presented in Eq.  resulted in calculated diffusion coefficients that were within the expected error range of the technique (approximately ±50 μm2/s), as compared to the results presented. Additionally, there is no qualitatively different trend evident from use of the Bruggeman approximation, implying that the error of the technique is not sufficiently low to resolve the diffusion coefficients yielded by the different approximations.
  32. W. M. b.-M. Yunus and A. b.-A. Rahman, “Refractive index of solutions at high concentrations,” Appl. Opt. 27, 3341–3343(1988). [CrossRef] [PubMed]
  33. J. Crank, The Mathematics of Diffusion, 2nd ed. (Oxford Univ. Press, 1975).
  34. K. S. Sorbie and C. J. Tomlinson, “Analytical method for evaluating the effective molecular diffusion coefficient within porous media,” Chem. Eng. Sci. 48, 1813–1818 (1993). [CrossRef]
  35. A. Carbonaro, R. Walczak, P. M. Calderale, and M. Ferrari, “Nano-pore silicon membrane characterization by diffusion and electrical resistance,” J. Membr. Sci. 241, 249–255 (2004). [CrossRef]
  36. G. Liu, L. Barbour, and B. C. Si, “Unified multilayer diffusion model and application to diffusion experiment in porous media by method of chambers,” Environ. Sci. Technol. 43, 2412–2416 (2009). [CrossRef] [PubMed]
  37. M. T. van Genuchten and J. C. Parker, “Boundary conditions for displacement experiments through short laboratory soil columns,” Soil Sci. Soc. Am. J. 48, 703–708 (1984). [CrossRef]
  38. C. Pacholski, C. Yu, G. M. Miskelly, D. Godin, and M. J. Sailor, “Reflective interferometric Fourier transform spectroscopy: a self-compensating label-free immunosensor using double-layers of porous SiO2,” J. Am. Chem. Soc. 128, 4250–4252(2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited