OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 27 — Sep. 20, 2011
  • pp: 5338–5343

High-power picosecond terahertz-wave generation in photonic crystal fiber via four-wave mixing

Huihui Wu, Hongjun Liu, Nan Huang, Qibing Sun, and Jin Wen  »View Author Affiliations


Applied Optics, Vol. 50, Issue 27, pp. 5338-5343 (2011)
http://dx.doi.org/10.1364/AO.50.005338


View Full Text Article

Enhanced HTML    Acrobat PDF (579 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate picosecond terahertz (THz)-wave generation via four-wave mixing in an octagonal photonic crystal fiber (O-PCF). Perfect phase-matching is obtained at the pump wavelength of 1.55 μm and a generation scheme is proposed. Using this method, THz waves can be generated in the frequency range of 7.07 7.74 THz . Moreover, peak power of 2.55 W , average power of 1.53 mW , and peak conversion efficiency of more than 66.65 dB at 7.42 THz in a 6.25 cm long fiber are realized with a pump peak power of 2 kW .

© 2011 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing

ToC Category:
Nonlinear Optics

History
Original Manuscript: June 9, 2011
Revised Manuscript: July 25, 2011
Manuscript Accepted: July 26, 2011
Published: September 19, 2011

Citation
Huihui Wu, Hongjun Liu, Nan Huang, Qibing Sun, and Jin Wen, "High-power picosecond terahertz-wave generation in photonic crystal fiber via four-wave mixing," Appl. Opt. 50, 5338-5343 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-27-5338


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Opt. 49, E48–E57 (2010). [CrossRef] [PubMed]
  2. L. Ho, M. Pepper, and P. Taday, “Terahertz spectroscopy: Signatures and fingerprints,” Nat. Photon. 2, 541–543 (2008). [CrossRef]
  3. J. D. Kraus, Radio Astronomy (Cygnus-Quasar, 1986).
  4. T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, and M. Koch, “Audio signal transmission over THz communication channel using semiconductor modulator,” Electron. Lett. 40, 124–125 (2004). [CrossRef]
  5. B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002). [CrossRef]
  6. Y.-W. Huang, T.-F. Tseng, C.-C Kuo, Y.-J Hwang, and C.-K. Sun, “Fiber-based swept-source terahertz radar,” Opt. Lett. 35, 1344–1346 (2010). [CrossRef] [PubMed]
  7. N. M. Froberg, B. B. Hu, X.-C. Zhang, and D. H. Auston, “Terahertz radiation from a photoconducting antenna array,” IEEE J. Quantum Electron. 28, 2291–2301 (1992). [CrossRef]
  8. L. Xu, X.-C. Zhang, and D. H. Auston, “Terahertz beam generation by femtosecond optical pulses in electro-optic materials,” Appl. Phys. Lett. 61, 1784–1787 (1992). [CrossRef]
  9. A. S. Nikoghosyan, E. M. Laziev, R. M. Martirosyan, and A. A. Hakhoumian, “Efficient ultrashort light pulse conversion in GHz-THz pulses in ZnTe, GaAs, and DAST crystals,” Proc. SPIE 4752, 40–48 (2002). [CrossRef]
  10. W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, “Efficient, tunable, and coherent 0.18–5.27 THz source based on GaSe crystal,” Opt. Lett. 27, 1454–1456 (2002). [CrossRef]
  11. T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, “Tunable terahertz wave generation in the 3 to 7 THz region from GaP,” Appl. Phys. Lett. 83, 237–239 (2003). [CrossRef]
  12. K. Suizu and K. Kawase, “Terahertz wave generation in a conventional optical fiber,” Opt. Lett. 32, 2990–2992 (2007). [CrossRef] [PubMed]
  13. E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).
  14. J.-S. Chiang and T.-L. Wu, “Analysis of propagation characteristics for an octagonal photonic crystal fiber (O-PCF),” Opt. Commun. 258, 170–176 (2006). [CrossRef]
  15. S. M. Abdur Razzak and Yoshinori Namihira, “Proposal for highly nonlinear dispersion-flattened octagonal photonic crystal fibers,” IEEE Photon. Technol. Lett. 20, 249–251(2008). [CrossRef]
  16. R. H. Stolen, Bösch, and C. Lin, “Phase matching in birefringent fibers,” Opt. Lett. 6, 213–215 (1981). [CrossRef] [PubMed]
  17. N. Shibata, M. Ohashi, K. Kitayama, and S. Seikai, “Frequency tuning of a Stokes wave for stimulated four-photon mixing by temperature-induced birefringence change,” Opt. Lett. 10, 77–79 (1985). [CrossRef] [PubMed]
  18. G. A. Nowak, Y.-H. Kao, T. J. Xia, and M. N. Islam, “Low-power high-efficiency wavelength conversion based on modulational instability in high-nonlinearity fiber,” Opt. Lett. 23, 936–938(1998). [CrossRef]
  19. J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, “Four-wave mixing based 10 Gb/s tunable wavelength conversion using a holey fiber with a high SBS threshold,” IEEE Photon. Technol. Lett. 15, 440–442 (2003). [CrossRef]
  20. Jay E. Sharping, Marco Fiorentino, Ayodeji Coker, and Prem Kumar, “Four-wave mixing in microstructure fiber,” Opt. Lett. 26, 1048–1050 (2001). [CrossRef]
  21. K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic Crystal fiber,” IEEE Photon. Technol. Lett. 17, 624–626(2005). [CrossRef]
  22. T. P. White, R. C. McPhedran, C. M. Sterke, N. M. Litchinitser, and B. J. Eggleton, “Resonance and scattering in microstructured optical fibers,” Opt. Lett. 27, 1977–1979 (2002). [CrossRef]
  23. J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008). [CrossRef]
  24. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).
  25. R. L. Sutherland, Handbook of Nonlinear Optics (Dekker, 2003). [CrossRef]
  26. L. Vincetti, V. Setti, and M. Zoboli, “Terahertz tube lattice fibers with octagonal symmetry,” IEEE Photon. Technol. Lett. 22, 972–974 (2010). [CrossRef]
  27. H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634–2636 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited