OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 28 — Oct. 1, 2011
  • pp: 5361–5368

Beam position stabilization for a confocal multiphoton microscope

P. Groß, L. Kleinschmidt, S. Beer, and C. Fallnich  »View Author Affiliations


Applied Optics, Vol. 50, Issue 28, pp. 5361-5368 (2011)
http://dx.doi.org/10.1364/AO.50.005361


View Full Text Article

Enhanced HTML    Acrobat PDF (698 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The influence of beam-pointing on scanning confocal microscopy is investigated. The beam displacement is measured using a quadrant photodiode, and the apparent movement of a sub-micron-sized particle observed by second-harmonic microscopy is linked to the beam displacement. A simple beam-pointing stabilization is implemented, and improvement of beam stability by three orders of magnitude on long time scales is achieved.

© 2011 Optical Society of America

OCIS Codes
(180.1790) Microscopy : Confocal microscopy
(180.5810) Microscopy : Scanning microscopy
(140.3425) Lasers and laser optics : Laser stabilization

ToC Category:
Microscopy

History
Original Manuscript: June 14, 2011
Revised Manuscript: July 29, 2011
Manuscript Accepted: July 30, 2011
Published: September 21, 2011

Virtual Issues
Vol. 6, Iss. 11 Virtual Journal for Biomedical Optics

Citation
P. Groß, L. Kleinschmidt, S. Beer, and C. Fallnich, "Beam position stabilization for a confocal multiphoton microscope," Appl. Opt. 50, 5361-5368 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-28-5361


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Pawley, Handbook of Biological Confocal Microscopy (Springer, Berlin 2006). [CrossRef]
  2. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782(1994). [CrossRef] [PubMed]
  3. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Science 313, 1642–1645 (2006). [CrossRef] [PubMed]
  4. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–795 (2006). [CrossRef] [PubMed]
  5. B. Huang, S. A. Jones, B. Brandenburg, and X. Zhuang, “Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution,” Nat. Methods 23, 1–6 (2008).
  6. E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal color centres with nanometric resolution,” Nat. Photon. 3, 144–147 (2009). [CrossRef]
  7. X. Nan, J. Cheng, and X. S. Xie, “Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy,” J. Lipid Res. 44, 2202–2208(2003). [CrossRef] [PubMed]
  8. M. Jurna, M. Windbergs, C. J. Strachan, L. Hartsuiker, C. Otto, P. Kleinebudde, J. L. Herek, and H. L. Offerhaus, “Coherent anti-Stokes Raman scattering microscopy to monitor drug dissolution in different oral pharmaceutical tablets,” J. Innov. Opt. Health Sci. 2, 37–43 (2009). [CrossRef]
  9. D. Ress, M. L. Harlow, M. Schwarz, R. M. Marshall, and U. L. McMahan, “Automatic acquisition of fiducial markers and alignment of images in tilt series for electron tomography,” J. Electron Microsc. 48, 277–287 (1999).
  10. M. Mori, A. Pirozhkov, M. Nishiuchi, K. Ogura, A. Sagisaka, Y. Hayashi, S. Orimo, A. Fukumi, Z. Li, M. Kado, and H. Daido, “Development of beam-pointing stabilizer on a 10 TWTi:Al2O3 laser system JLITE-X for laser-excited ion accelerator research,” Laser Phys. 16, 1092–1096(2006). [CrossRef]
  11. T. A. Savard, K. M. O’Hara, and J. E. Thomas, “Laser-noise-induced heating in far-off resonance optical traps,” Phys. Rev. A 56, R1095 (1997). [CrossRef]
  12. A. R. Carter, G. M. King, T. A. Ulrich, W. Halsey, D. Alchenberger, and T. T. Perkins, “Stabilization of an optical microscope to 0.1 nm in three dimensions,” Appl. Opt. 46, 421–427 (2007). [CrossRef] [PubMed]
  13. P. Groß, L. Kleinschmidt, S. Beer, C. Cleff, and C. Fallnich, “Single-laser light source for CARS microscopy based on soliton self-frequency shift in a microsctructured fiber,” Appl. Phys. B 101, 167–172 (2010). [CrossRef]
  14. A. A. Tovar and L. W. Casperson, “Generalized beam matrices: Gaussian beam propagation in misaligned complex optical systems,” J. Opt. Soc. Am. A 12, 1522–1533 (1995). [CrossRef]
  15. LabVIEW PID and Fuzzy Logic Toolkit User Manual, National Instruments, June 2009: www.ni.com/pdf/manuals/372192d.pdf (accessed 2 August 2010).
  16. A. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221–230 (1966). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited