OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 28 — Oct. 1, 2011
  • pp: 5382–5389

Calibration method using a single retarder to simultaneously measure polarization and fully characterize a polarimeter over a broad range of wavelengths

Matthew J. Romerein, Jeffrey N. Philippson, Robert L. Brooks, and Ralph C. Shiell  »View Author Affiliations


Applied Optics, Vol. 50, Issue 28, pp. 5382-5389 (2011)
http://dx.doi.org/10.1364/AO.50.005382


View Full Text Article

Enhanced HTML    Acrobat PDF (376 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A method has been developed to improve the accuracy with which the polarization state of light can be characterized by the rotating quarter-wave plate technique. Through detailed analysis, verified by experiment, we determine the positions of the optic axes of the retarder and linear polarizer, and the wave plate retardance, to better than 1 ° for typical signal-to-noise ratios. Accurate determination of the Stokes parameters can be achieved using a single wave plate for a wide range of optical wavelengths using this technique to determine the precise retardance at each of the wavelengths of interest.

© 2011 Optical Society of America

OCIS Codes
(120.4530) Instrumentation, measurement, and metrology : Optical constants
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(120.5410) Instrumentation, measurement, and metrology : Polarimetry

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: June 9, 2011
Manuscript Accepted: July 27, 2011
Published: September 21, 2011

Citation
Matthew J. Romerein, Jeffrey N. Philippson, Robert L. Brooks, and Ralph C. Shiell, "Calibration method using a single retarder to simultaneously measure polarization and fully characterize a polarimeter over a broad range of wavelengths," Appl. Opt. 50, 5382-5389 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-28-5382


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. G. Stokes, Mathematical and Physical Papers (Cambridge University, 1901), Vol.  3.
  2. M. R. Foreman and P. Török, “Information and resolution in electromagnetic optical systems,” Phys. Rev. A 82, 043835(2010). [CrossRef]
  3. F. Meriaudeau, M. Ferraton, C. Stolz, O. Morel, and L. Bigue, “Polarization imaging for industrial inspection,” Proc. SPIE 6813, 681308 (2008). [CrossRef]
  4. F. Snik, A. G. de Wijn, K. Ichimoto, C. E. Fischer, C. U. Keller, and B. W. Lites, “Observations of solar scattering polarization at high spatial resolution,” Astron. Astrophys. 519, A18(2010). [CrossRef]
  5. D. H. Goldstein, “Mueller matrix dual-rotating retarder polarimeter,” Appl. Opt. 31, 6676–6683 (1992). [CrossRef] [PubMed]
  6. R. Randhawa and R. S. Kaler, “High-speed transmission limitations due to polarization mode dispersion,” Optik 121, 1450–1454 (2010). [CrossRef]
  7. L. Broch and L. Johann, “Optimizing precision of rotating compensator ellipsometry,” Phys. Status Solidi C 5, 1036–1040 (2008). [CrossRef]
  8. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45, 5453–5469 (2006). [CrossRef] [PubMed]
  9. R. M. A. Azzam, “Arrangement of four photodetectors for measuring the state of polarization of light,” Opt. Lett. 10, 309–311 (1985). [CrossRef] [PubMed]
  10. B. Schaefer, E. Collett, R. Smyth, D. Barrett, and B. Fraher, “Measuring the Stokes polarization parameters,” Am. J. Phys. 75, 163–168 (2007). [CrossRef]
  11. H. G. Berry, G. Gabrielse, and A. E. Livingston, “Measurement of the Stokes parameters of light,” Appl. Opt. 16, 3200–3205 (1977). [CrossRef] [PubMed]
  12. C. Flueraru, S. Latoui, J. Besse, and P. Legendre, “Error analysis of a rotating quarter-wave plate Stokes’ polarimeter,” IEEE Trans. Instrum. Meas. 57, 731–735 (2008). [CrossRef]
  13. Comar Optics Inc., http://www.comaroptics.com.
  14. J. S. Tyo and H. Wei, “Optimizing imaging polarimeters constructed with imperfect optics,” Appl. Opt. 45, 5497–5503(2006). [CrossRef] [PubMed]
  15. R. L. Brooks and E. H. Pinnington, “Polarization measurements of HeI singlet transitions following beam-tilted-foil excitation,” Phys. Rev. A 18, 1454–1458 (1978). [CrossRef]
  16. R. L. Brooks, “Polarization studies using beam foil spectroscopy,” Ph.D. thesis (University of Alberta, 1979).
  17. E. Hecht, “A mathematical description of polarization,” in Optics, 4th ed., A.Black, ed. (Addison Wesley, 2002), pp. 373–379.
  18. V. A. Dlugunovich, V. N. Snopko, and O. V. Tsaryuk, “Analysis of a method for measuring polarization characteristics with a Stokes polarimeter having a rotating phase plate,” J. Opt. Technol. 68, 269–273 (2001). [CrossRef]
  19. P. A. Williams, “Rotating-wave-plate Stokes polarimeter for differential group delay measurements of polarization-mode dispersion,” Appl. Opt. 38, 6508–6515 (1999). [CrossRef]
  20. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).
  21. M. Ugray, J. E. Atfield, T. G. McCarthy, and R. C. Shiell, “Microcontroller-based wavemeter using compression locking of an internal mirror reference laser,” Rev. Sci. Instrum. 77, 113109 (2006). [CrossRef]
  22. M. Fox, Optical Properties of Solids (Oxford Univ. Press, 2010).
  23. M. Bass, Handbook of Optics (McGraw-Hill, 2000).
  24. M. S. El-Bahrawi, N. N. Nagib, S. A. Khodier, and H. M. Sidki, “Birefringence of muskovite mica,” Opt. Laser Technol. 30, 411–415 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited