OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 28 — Oct. 1, 2011
  • pp: 5397–5407

Early-photon fluorescence tomography of a heterogeneous mouse model with the telegraph equation

Bin Zhang, Xu Cao, Fei Liu, Xin Liu, Xin Wang, and Jing Bai  »View Author Affiliations


Applied Optics, Vol. 50, Issue 28, pp. 5397-5407 (2011)
http://dx.doi.org/10.1364/AO.50.005397


View Full Text Article

Enhanced HTML    Acrobat PDF (1288 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this study, we investigate the performance of early-photon fluorescence tomography based on a heterogeneous mouse model. The telegraph equation is used to accurately describe the propagation of light in tissues at short times. The optimal time gate for early photons is determined by singular value analysis at first. Then, fluorescent targets located in different organs of the mouse model are investigated. The simulation results demonstrate that the reconstructed tomographic images based on early photons yield improvement in spatial resolution and quantification than the quasi-CW measurements. Meanwhile, compared with the homogeneous model, the use of the heterogeneous model can improve the accuracy of fluorescence distribution and quantification in early-photon fluorescence tomography.

© 2011 Optical Society of America

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6920) Medical optics and biotechnology : Time-resolved imaging

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: April 11, 2011
Revised Manuscript: July 24, 2011
Manuscript Accepted: August 8, 2011
Published: September 22, 2011

Virtual Issues
Vol. 6, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Bin Zhang, Xu Cao, Fei Liu, Xin Liu, Xin Wang, and Jing Bai, "Early-photon fluorescence tomography of a heterogeneous mouse model with the telegraph equation," Appl. Opt. 50, 5397-5407 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-28-5397


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23, 313–320 (2005). [CrossRef] [PubMed]
  2. E. E. Graves, R. Weissleder, and V. Ntziachristos, “Fluorescence molecular imaging of small animal tumor models,” Curr. Mol. Med. 4, 419–430 (2004). [CrossRef] [PubMed]
  3. M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. USA 105, 19126–19131 (2008). [CrossRef] [PubMed]
  4. K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S. Feld, “Optical computed tomography in a turbid medium using early arriving photons,” J. Biomed. Opt. 5, 144–154 (2000). [CrossRef] [PubMed]
  5. F. Liu, K. M. Yoo, and R. R. Alfano, “Ultrafast laser-pulse transmission and imaging through biological tissues,” Appl. Opt. 32, 554–558 (1993). [CrossRef] [PubMed]
  6. M. E. Zevallos, S. K. Gayen, B. B. Das, M. Alrubaiee, and R. R. Alfano, “Picosecond electronic time-gated imaging of bones in tissues,” IEEE J. Sel. Top. Quantum Electron. 5, 916–922(1999). [CrossRef]
  7. J. Wu, L. Perelman, R. R. Dasari, and M. S. Feld, “Fluorescence tomographic imaging in turbid media using early-arriving photons and Laplace transforms,” Proc. Natl. Acad. Sci. USA 94, 8783–8788 (1997). [CrossRef] [PubMed]
  8. R. Berg, O. Jarlman, and S. Svanberg, “Medical transillumination imaging using short-pulse diode lasers,” Appl. Opt. 32, 574–579 (1993). [CrossRef] [PubMed]
  9. F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265(2000). [CrossRef]
  10. G. M. Turner, G. Zacharakis, A. Soubret, J. Ripoll, and V. Ntziachristos, “Complete-angle projection diffuse optical tomography by use of early photons,” Opt. Lett. 30, 409–411(2005). [CrossRef] [PubMed]
  11. G. M. Turner, A. Soubret, and V. Ntziachristos, “Inversion with early photons,” Med. Phys. 34, 1405–1411 (2007). [CrossRef] [PubMed]
  12. M. Niedre and V. Ntziachristos, “Comparison of fluorescence tomographic imaging in mice with early-arriving and quasi-continuous-wave photons,” Opt. Lett. 35, 369–371 (2010). [CrossRef] [PubMed]
  13. F. Leblond, H. Dehghani, D. Kepshire, and B. W. Pogue, “Early-photon fluorescence tomography: spatial resolution improvements and noise stability considerations,” J. Opt. Soc. Am. A 26, 1444–1457 (2009). [CrossRef]
  14. L. Hervé, A. Koenig, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, P. Peltié, and P. Rizo, “Noncontact fluorescence diffuse optical tomography of heterogeneous media,” Appl. Opt. 46, 4896–4906 (2007). [CrossRef] [PubMed]
  15. Y. Tan and H. Jiang, “Diffuse optical tomography guided quantitative fluorescence molecular tomography,” Appl. Opt. 47, 2011–2016 (2008). [CrossRef] [PubMed]
  16. C. Baltes and G. W. Faris, “Frequency domain measurements on turbid media with strong absorption using the PN approximation,” Appl. Opt. 48, 2991–3000 (2009). [CrossRef] [PubMed]
  17. A. D. Klose and E. W. Larsen, “Light transport in biological tissue based on the simplified spherical harmonics equations,” J. Comput. Phys. 220, 441–470 (2006). [CrossRef]
  18. J. Bouza-Domínguez and Y. Bérubé-Lauzière, “Diffuse light propagation in biological media by a time-domain parabolic simplified spherical harmonics approximation with ray-divergence effects,” Appl. Opt. 49, 1414–1429 (2010). [CrossRef] [PubMed]
  19. J. Bouza-Domínguez and Y. Bérubé-Lauzière, “Light propagation from fluorescent probes in biological tissues by coupled time-dependent parabolic simplified spherical harmonics equations,” Biomed. Opt. Express 2, 817–837 (2011). [CrossRef]
  20. D. J. Durian and J. Rudnick, “Photon migration at short times and distances and in cases of strong absorption,” J. Opt. Soc. Am. A 14, 235–245 (1997). [CrossRef]
  21. V. Soloviev, D. Wilson, and S. Vinogradov, “Phosphorescence lifetime imaging in turbid media: the forward problem,” Appl. Opt. 42, 113–123 (2003). [CrossRef] [PubMed]
  22. R. Ranadhir, “Telegrapher-based fluorescence-enhanced optical tomography in small volume,” Proc. SPIE 7561, 75610H(2010). [CrossRef]
  23. M. Xu, W. Cai, M. Lax, and R. R. Alfano, “Photon migration in turbid media using a cumulant approximation to radiative transfer,” Phys. Rev. E 65, 066609 (2002). [CrossRef]
  24. B. B. Das, F. Liu, and R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys. 60, 227–292 (1997). [CrossRef]
  25. V. Y. Soloviev, K. B. Tahir, J. McGinty, D. S. Elson, M. A. A. Neil, P. M. W. French, and S. R. Arridge, “Fluorescence lifetime imaging by using time-gated data acquisition,” Appl. Opt. 46, 7384–7391 (2007). [CrossRef] [PubMed]
  26. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999). [CrossRef]
  27. L. V. Wang and H.-i. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2007).
  28. S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993). [CrossRef] [PubMed]
  29. M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995). [CrossRef] [PubMed]
  30. F. Gao, H. Zhao, L. Zhang, Y. Tanikawa, A. Marjono, and Y. Yamada, “A self-normalized, full time-resolved method for fluorescence diffuse optical tomography,” Opt. Express 16, 13104–13121 (2008). [CrossRef] [PubMed]
  31. A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imag. 24, 1377–1386 (2005). [CrossRef]
  32. E. E. Graves, J. P. Culver, J. Ripoll, R. Weissleder, and V. Ntziachristos, “Singular-value analysis and optimization of experimental parameters in fluorescence molecular tomography,” J. Opt. Soc. Am. A 21, 231–241 (2004). [CrossRef]
  33. T. Lasser and V. Ntziachristos, “Optimization of 360°projection fluorescence molecular tomography,” Med. Image Anal. 11, 389–399 (2007). [CrossRef] [PubMed]
  34. B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, “Digimouse: a 3D whole body mouse atlas from CT and cryosection data,” Phys. Med. Biol. 52, 577–587 (2007). [CrossRef] [PubMed]
  35. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50, 4225–4241 (2005). [CrossRef] [PubMed]
  36. Q. Fang, “Monte Carlo eXtreme Software,” url: http://mcx.sourceforge.net.
  37. Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units,” Opt. Express 17, 20178–20190 (2009). [CrossRef] [PubMed]
  38. S. D. Konecky, G. Y. Panasyuk, K. Lee, A. G. Yodh, and J. C. Schotland, “Imaging complex structures with diffuse light,” Opt. Express 16, 5048–5060 (2008). [CrossRef] [PubMed]
  39. Y. Lin, H. Gao, O. Nalcioglu, and G. Gulsen, “Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study,” Phys. Med. Biol. 52, 5569–5585 (2007). [CrossRef] [PubMed]
  40. Y. Lin, W. C. Barber, J. S. Iwanczyk, W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a combined tri-modality FT/DOT/XCT system,” Opt. Express 18, 7835–7850 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited