OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 28 — Oct. 1, 2011
  • pp: 5422–5429

Estimate for the effect of forward scattering on the measurement of extinction for particles by cavity ringdown spectroscopy

Glenn S. Smith  »View Author Affiliations


Applied Optics, Vol. 50, Issue 28, pp. 5422-5429 (2011)
http://dx.doi.org/10.1364/AO.50.005422


View Full Text Article

Enhanced HTML    Acrobat PDF (419 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An analytical model is formulated for the extinction of light by particles in a cavity ringdown spectroscopy measurement. The electromagnetic field inside the cavity is assumed to be the lowest-order Gaussian beam, and the scattering by the particles is incorporated using van de Hulst’s approximation for the scattering by a sphere. This model includes both coherent scattering in the forward direction and strong scattering in the forward direction for electrically large particles. The model is used to estimate the amount of energy scattered by the particles that is coupled back into the incident beam. The consequences of this coupling for the measurement of the extinction cross section of spherical particles are examined.

© 2011 Optical Society of America

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(230.5750) Optical devices : Resonators
(290.5820) Scattering : Scattering measurements
(290.5850) Scattering : Scattering, particles
(300.0300) Spectroscopy : Spectroscopy
(300.6190) Spectroscopy : Spectrometers

ToC Category:
Scattering

History
Original Manuscript: April 19, 2011
Manuscript Accepted: August 12, 2011
Published: September 23, 2011

Citation
Glenn S. Smith, "Estimate for the effect of forward scattering on the measurement of extinction for particles by cavity ringdown spectroscopy," Appl. Opt. 50, 5422-5429 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-28-5422


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Zalicki and R. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995). [CrossRef]
  2. K. K. Lehmann and D. Romanini, “The superposition principle in cavity ring-down spectroscopy,” J. Chem. Phys. 105, 10263–10277 (1996). [CrossRef]
  3. J. T. Hodges, J. P. Looney, and R. D. van Zee, “Response of a ring-down cavity to an arbitrary excitation,” J. Chem. Phys. 105, 10278–10288 (1996). [CrossRef]
  4. G.Berden and R.Engeln, eds., Cavity Ring-Down Spectroscopy: Techniques and Applications (Wiley, 2009).
  5. S. Rudić, R. E. H. Miles, A. J. Orr-Ewing, and J. P. Reid, “Optical properties of micrometer size water droplets studied by cavity ringdown spectroscopy,” Appl. Opt. 46, 6142–6150(2007). [CrossRef] [PubMed]
  6. D.-H. Lee, Y. Yoon, B. Kim, J. Y. Lee, Y. S. Yoo, and J. W. Hahn, “Optimization of mode matching in pulsed cavity ringdown spectroscopy by monitoring non-degenerate transverse mode beating,” Appl. Phys. B 74, 435–440 (2002). [CrossRef]
  7. G. S. Smith, An Introduction to Classical Electromagnetic Radiation (Cambridge, 1997), pp. 240–250.
  8. A. E. Siegman, Lasers (University Science Books, 1986), pp. 663–674.
  9. P. F. Goldsmith, Quasioptical Systems: Gaussian Beam Quasioptical Propagation and Applications (IEEE, 1998), pp. 9–38.
  10. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957), pp. 172–183.
  11. R. G. Newton, Scattering Theory of Waves and Particles, 2nd ed. (Dover, 2002), pp. 66–69.
  12. W. A. Farone and M. J. Robinson III, “The range of validity of the anomalous diffraction approximation to electromagnetic scattering by a sphere,” Appl. Opt. 7, 643–645(1968). [CrossRef] [PubMed]
  13. S. K. Sharma, “On the validity of the anomalous diffraction approximation,” J. Mod. Opt. 39, 2355–2361 (1992). [CrossRef]
  14. W. T. Grandy, Jr., Scattering of Waves from Large Spheres (Cambridge, 2000), pp. 115–118.
  15. G. S. Smith, An Introduction to Classical Electromagnetic Radiation (Cambridge, 1997), p. 293.
  16. R. G. Newton, Scattering Theory of Waves and Particles, 2nd ed. (Dover, 2002), pp. 18–20.
  17. C. Mätzler, “MATLAB functions for Mie scattering and absorption,” Research report no. 2002-08 (University of Bern, 2002).
  18. A. E. Siegman, Lasers (University Science Books, 1986), pp. 646–648.
  19. P. F. Goldsmith, Quasioptical Systems: Gaussian Beam Quasioptical Propagation and Applications (IEEE, 1998), pp. 59–68.
  20. A. Pettersson, E. R. Lovejoy, C. A. Brock, S. S. Brown, and A. R. Ravishankara, “Measurement of aerosol optical extinction at 532 nm with pulsed cavity ring down spectroscopy,” J. Aerosol Sci. 35, 995–1011 (2004). [CrossRef]
  21. T. J. A. Butler, J. L. Miller, and A. J. Orr-Ewing, “Cavity ring-down spectroscopy measurements of single aerosol particle extinction. I. The effect of position of a particle within the laser beam on extinction,” J. Chem. Phys. 126, 174302(2007). [CrossRef] [PubMed]
  22. T. J. A. Butler, D. Mellon, J. Kim, J. Litman, and A. J. Orr-Ewing, “Optical-feedback cavity ring-down spectroscopy measurements of extinction by aerosol particles,” J. Phys. Chem. A 113, 3963–3972 (2009). [CrossRef] [PubMed]
  23. N. Lang-Yona, Y. Rudich, E. Segre, E. Dinar, and A. Abo-Riziq, “Complex refractive indices of aerosols retrieved by continuous wave-cavity ring down aerosol spectrometer,” Anal. Chem. 81, 1762–1769 (2009). [CrossRef] [PubMed]
  24. R. E. H. Miles, S. Rudić, A. J. Orr-Ewing, and J. P. Reid, “Influence of uncertainties in the diameter and refractive index of calibration polystyrene beads on the retrieval of aerosol optical properties using cavity ring down spectroscopy,” J. Phys. Chem. A 114, 7077–7084 (2010). [CrossRef] [PubMed]
  25. D. Mellon, S. J. King, J. Kim, J. P. Reid, and A. J. Orr-Ewing, “Measurement of extinction by aerosol particles in the near-infrared using continuous wave cavity ring-down spectroscopy,” J. Phys. Chem. 115, 774–783 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited