OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 28 — Oct. 1, 2011
  • pp: 5430–5436

Influence of spectral broadening on femtosecond wavelength conversion based on four-wave mixing in silicon waveguides

Zhaolu Wang, Hongjun Liu, Nan Huang, Qibing Sun, and Jin Wen  »View Author Affiliations

Applied Optics, Vol. 50, Issue 28, pp. 5430-5436 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (710 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Femtosecond wavelength conversion in the telecommunication bands via four-wave mixing in a 1.5 mm long silicon rib waveguide is theoretically investigated. Compared with picosecond pulses, the spectra are greatly broadened for the femtosecond pulses due to self-phase modulation and cross-phase modulation in the four-wave mixing process, and it is difficult to achieve a wavelength converter when the pump and signal pulse widths are close to or less than 100 fs in the telecommunication bands because of the spectral overlap. The influence of the spectral broadening on the conversion efficiency is also investigated. The conversion bandwidth of 220 nm and peak conversion efficiency of 8 dB are demonstrated by using 500 fs pulses with higher efficiency than the picosecond pulse-pumped efficiency when the repetition rate is 100 GHz .

© 2011 Optical Society of America

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(230.7370) Optical devices : Waveguides
(230.7405) Optical devices : Wavelength conversion devices

ToC Category:
Nonlinear Optics

Original Manuscript: June 9, 2011
Manuscript Accepted: August 5, 2011
Published: September 23, 2011

Zhaolu Wang, Hongjun Liu, Nan Huang, Qibing Sun, and Jin Wen, "Influence of spectral broadening on femtosecond wavelength conversion based on four-wave mixing in silicon waveguides," Appl. Opt. 50, 5430-5436 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photon. 4, 535–544 (2010). [CrossRef]
  2. V. Raghunathan, O. Boyraz, and B. Jalali, “20 dB on-off Raman amplification in silicon waveguides,” in Proceedings of the Conference on Lasers and Electro-optics (CLEO), Vol. 1(IEEE, 2005), pp. 349–351. [CrossRef]
  3. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005). [CrossRef] [PubMed]
  4. T. K. Liang and H. K. Tsang, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for auto-correlation measurements,” Appl. Phys. Lett. 81, 1323–1325 (2002). [CrossRef]
  5. D. Dimitripoulos, R. Jhavery, R. Claps, J. C. S. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86, 071115 (2005). [CrossRef]
  6. Y. Liu and H. Tsang, “Time dependent density of free carriers generated by two photon absorption in silicon waveguides,” Appl. Phys. Lett. 90, 211105 (2007). [CrossRef]
  7. H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption, and self-phase modulation in silicon waveguides at 1.5 um wavelength,” Appl. Phys. Lett. 80, 416–418 (2002). [CrossRef]
  8. I.-W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, and R. M. Osgood Jr., “Ultrafast-pulse self-phase modulation and third-order dispersion in Si photonic wire-waveguides,” Opt. Express 14, 12380–12387 (2006). [CrossRef] [PubMed]
  9. L. Yin, Q. Lin, and G. P. Agrawal, “Soliton fission and supercontinuum generation in silicon waveguides,” Opt. Lett. 32, 391–393 (2007). [CrossRef] [PubMed]
  10. L. Yin and G. P. Agrawal, “Impact of two-photon absorption on self-phase modulation in silicon waveguides,” Opt. Lett. 32, 2031–2033 (2007). [CrossRef] [PubMed]
  11. M. Khorasaninejad and S. S. Saini, “All-optical logic gates using nonlinear effects in silicon-on-insulator waveguides,” Appl. Opt. 48, F31–F36 (2009). [CrossRef]
  12. I.-W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, and R. M. Osgood Jr., “Cross-phase modulation-induced spectral and temporal modulation effects on co-propagating femtosecond pulses in silicon photonic wires,” Opt. Express 15, 1135–1146(2007). [CrossRef] [PubMed]
  13. L. Yin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, “Optical switching using nonlinear polarization rotation inside silicon waveguides,” Opt. Lett. 34, 476–478 (2009). [CrossRef] [PubMed]
  14. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13, 4629–4637(2005). [CrossRef] [PubMed]
  15. Q. Lin, T. J. Johnson, R. Perahia, C. P. Michael, and O. J. Painter, “A proposal for highly tunable optical parametric oscillation in silicon micro-resonators,” Opt. Express 16, 10596–10610 (2008). [CrossRef] [PubMed]
  16. H. Rong, Y. Kuo, A. Liu, and M. Paniccia, “High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides,” Opt. Express 14, 1182–1188 (2006). [CrossRef] [PubMed]
  17. A. C. Turner-Foster, M. A. Foster, R. Salem, A. L. Gaeta, and M. Lipson, “Frequency conversion over two-thirds of an octave in silicon nanowaveguides,” Opt. Express 18, 1904–1908 (2010). [CrossRef] [PubMed]
  18. S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photon. 4, 561–564 (2010). [CrossRef]
  19. R. L. Espinola, J. I. Dadap, R. M. Osgood Jr., S. J. McNab, and Y. A. Vlasov, “C-band wavelength conversion in silicon photonic wire waveguides,” Opt. Express 13, 4341–4349 (2005). [CrossRef] [PubMed]
  20. Y.-H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, “Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides,” Opt. Express 14, 11721–11726(2006). [CrossRef] [PubMed]
  21. S.-M. Gao, E.-K. Tien, Q. Song, Y.-W. Huang, and S. K. Kalyoncu, “Experiment of C-band wavelength conversion in a silicon waveguide pumped by dispersed femtosecond laser pulse,” Chin. Phys. Lett. 27, 124206 (2010). [CrossRef]
  22. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006). [CrossRef] [PubMed]
  23. X. Liu, R. M. Osgood Jr., Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photon. 4, 557–560 (2010). [CrossRef]
  24. W. Mathlouthi, H. Rong, and M. Paniccia, “Characterization of efficient wavelength conversion by four-wave mixing in sub-micron silicon waveguides,” Opt. Express 16, 16735–16745(2008). [CrossRef] [PubMed]
  25. Q. Lin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, “Ultrabroadband parametric generation and wavelength conversion in silicon waveguides,” Opt. Express 14, 4786–4799 (2006). [CrossRef] [PubMed]
  26. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: Modeling and applications,” Opt. Express 15, 16604–16644 (2007). [CrossRef] [PubMed]
  27. X. Sang and O. Boyraz, “Gain and noise characteristics of high-bit-rate silicon parametric amplifiers,” Opt. Express 16, 13122–13132 (2008). [CrossRef] [PubMed]
  28. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Elsevier, 2007).
  29. N. C. Panoiu, X. Liu, and R. M. Osgood Jr., “Self-steepening of ultrashort pulses in silicon photonic nanowires,” Opt. Lett. 34, 947–949 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited