OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 28 — Oct. 1, 2011
  • pp: 5437–5445

Optimized Stokes polarimeters based on a single twisted nematic liquid-crystal device for the minimization of noise propagation

Alba Peinado, Angel Lizana, Josep Vidal, Claudio Iemmi, and Juan Campos  »View Author Affiliations

Applied Optics, Vol. 50, Issue 28, pp. 5437-5445 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (568 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This work evidences the suitability of applying a single twisted nematic liquid-crystal (TN-LC) device to obtain dynamic polarimeters with high accuracy and repeatability. Different Stokes polarimeter setups based on a TN-LC device are optimized, leading to the minimization of the noise propagated from intensity measurements to the Stokes vector calculations. To this aim, we revise the influence of working out of normal incidence and of performing a double pass of the light beam through the LC device. In addition, because transmissive TN-LC devices act as elliptical retarders, an extra study is performed. It analyzes the influence of projecting the light exiting from the TN-LC device over elliptical states of polarization. Finally, diverse optimized polarimeters are experimentally implemented and validated by measuring different states of partially and fully polarized light. The analysis is conducted both for monochromatic (He–Ne laser) and LED light sources, proving the potential of polarimeters based on a single TN-LC device.

© 2011 Optical Society of America

OCIS Codes
(120.2130) Instrumentation, measurement, and metrology : Ellipsometry and polarimetry
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(230.3720) Optical devices : Liquid-crystal devices

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: April 29, 2011
Revised Manuscript: July 26, 2011
Manuscript Accepted: July 29, 2011
Published: September 26, 2011

Alba Peinado, Angel Lizana, Josep Vidal, Claudio Iemmi, and Juan Campos, "Optimized Stokes polarimeters based on a single twisted nematic liquid-crystal device for the minimization of noise propagation," Appl. Opt. 50, 5437-5445 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. M. Twietmeyer, R. A. Chipman, Ann E. Elsner, Y. Zhao, and D. VanNasdale, “Mueller matrix retinal imager with optimized polarization conditions,” Opt. Express 16, 21339–21354 (2008). [CrossRef] [PubMed]
  2. M. Anastasiadou, A. De Martino, D. Clement, F. Liège, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi C 5, 1423–1426 (2008). [CrossRef]
  3. A. Márquez, I. Moreno, C. Iemmi, A. Lizana, J. Campos, and M. J. Yzuel, “Mueller–Stokes characterization and optimization of a liquid crystal on silicon display showing depolarization,” Opt. Express 16, 1669–1685 (2008). [CrossRef] [PubMed]
  4. P. Y. Gerligand, M. Smith, and R. Chipman, “Polarimetric images of a cone,” Opt. Express 4, 420–430 (1999). [CrossRef] [PubMed]
  5. A. Peinado, A. Lizana, J. Vidal, C. Iemmi, and J. Campos, “Optimization and performance criteria of a Stokes polarimeter based on two variable retarders,” Opt. Express 18, 9815–9830 (2010). [CrossRef] [PubMed]
  6. J. M. Bueno, “Polarimetry using liquid-crystal variable retarders: theory and calibration,” J. Opt. A 2, 216–222(2000). [CrossRef]
  7. A. De Martino, Y. K. Kim, E. Garcia-Caurel, B. Laude, and B. Drévillon, “Optimized Mueller polarimeter with liquid crystals,” Opt. Lett. 28, 616–618 (2003). [CrossRef] [PubMed]
  8. A. M. Gandorfer, “Ferroelectric retarders as an alternative to piezoelastic modulators for use in solar Stokes vector polarimetry,” Opt. Eng. 38, 1402–1408 (1999). [CrossRef]
  9. E. Garcia-Caurel, A. De Martino, and B. Drévillon, “Spectroscopic Mueller polarimeter based on liquid crystal devices,” Thin Solid Films 455–456, 120–123 (2004). [CrossRef]
  10. L. Gendre, A. Foulonneau, and L. Bigué, “Imaging linear polarimetry using a single ferroelectric liquid crystal modulator,” Appl. Opt. 49, 4687–4699 (2010). [CrossRef] [PubMed]
  11. L. B. Wolff and A. G. Andreou, “Polarization camera sensors,” Image Vis. Comp. 13, 497–510 (1995). [CrossRef]
  12. S. L. Blakeney, S. E. Day, and J. N. Stewart, “Determination of unknown input polarisation using a twisted nematic liquid crystal display with fixed components,” Opt. Commun. 214, 1–8 (2002). [CrossRef]
  13. D. Goldstein, Polarized Light (Marcel Dekker, 2003). [CrossRef]
  14. A. Lizana, N. Martín, M. Estapé, E. Fernández, I. Moreno, A. Márquez, C. Iemmi, J. Campos, and M. J. Yzuel, “Influence of the incident angle in the performance of liquid crystal on silicon displays,” Opt. Express 17, 8491–8505 (2009). [CrossRef] [PubMed]
  15. D. S. Sabatke, M. R. Descour, E. L. Dereniak, W. C. Sweatt, S. A. Kemme, and G. S. Phipps, “Optimization of retardance for a complete Stokes polarimeter,” Opt. Lett. 25, 802–804(2000). [CrossRef]
  16. S. Huard, Polarisation de la Lumière (Masson, 1993).
  17. J. A. Davis, I. Moreno, and P. Tsai, “Polarization eigenstates for twisted-nematic liquid-crystal displays,” Appl. Opt. 37, 937–945 (1998). [CrossRef]
  18. S. Stallinga, “Equivalent retarder approach to reflective liquid crystal displays,” J. Appl. Phys. 86, 4756–4766(1999). [CrossRef]
  19. C. Soutar and K. Lu, “Determination of the physical properties of an arbitrary twisted-nematic liquid crystal cell,” Opt. Eng. 33, 2704–2712 (1994). [CrossRef]
  20. K. Lu and B. E. A. Saleh, “Theory and design of the liquid crystal TV as an optical spatial phase modulator,” Opt. Eng. 29, 1107–1113 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited