OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 28 — Oct. 1, 2011
  • pp: 5457–5464

Ring-type plasmon resonance in metallic nanoshells

Boris Apter, Oren Guilatt, and Uzi Efron  »View Author Affiliations


Applied Optics, Vol. 50, Issue 28, pp. 5457-5464 (2011)
http://dx.doi.org/10.1364/AO.50.005457


View Full Text Article

Enhanced HTML    Acrobat PDF (1204 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A simple, approximate theoretical model of surface plasmon resonance in two-dimensional metal nanoshells is developed. The model is based on the concept of short-range surface plasmons propagating around closed circular metal nanotubes. In this model, the plasmon resonance in a metal nanotube is treated as a propagating, self-interfering plasmonic wave, in a ring-type resonance, at plasmonic wavelengths matching an integer fraction of the nanotube’s effective circumference. The model is validated by detailed computer simulations based on the finite-difference time-domain method and is shown to be in full agreement with the widely used plasmon hybridization model, which is based on the quasi-static approximation.

© 2011 Optical Society of America

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(240.6680) Optics at surfaces : Surface plasmons
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optics at Surfaces

History
Original Manuscript: May 6, 2011
Revised Manuscript: July 6, 2011
Manuscript Accepted: July 6, 2011
Published: September 30, 2011

Citation
Boris Apter, Oren Guilatt, and Uzi Efron, "Ring-type plasmon resonance in metallic nanoshells," Appl. Opt. 50, 5457-5464 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-28-5457


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528–539 (2003). [CrossRef] [PubMed]
  2. A. Shalabney and I. Abdulhalim, “Sensitivity-enhancement methods for surface plasmon sensors,” Laser Photon. Rev. 5, 571–606 (2011). [CrossRef]
  3. G. C. Schatz, M. A. Young, and R. P. Van Duyne, “Electromagnetic mechanism of SERS,” in Surface-Enhanced Raman Scattering, K.Kneipp, M.Moskovits, and H.Kneipp, eds. (Springer-Verlag, 2006), pp. 19–46. [CrossRef]
  4. H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69, 2327–2329 (1996). [CrossRef]
  5. D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005). [CrossRef]
  6. A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242–1246 (1951). [CrossRef]
  7. S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288, 243–247 (1998). [CrossRef]
  8. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003). [CrossRef] [PubMed]
  9. T. Sondergaard and S. I. Bozhevolnyi, “Slow-plasmon resonant nanostructures: scattering and field enhancements,” Phys. Rev. B 75, 073402 (2007). [CrossRef]
  10. G. Della Valle, T. Sondergaard, and S. I. Bozhevolnyi, “Efficient suppression of radiation damping in resonant retardation-based plasmonic structures,” Phys. Rev. B 79, 113410 (2009). [CrossRef]
  11. E. S. Kooij, W. Ahmed, H. J. W. Zandvliet, and B. Poelsema, “Localized plasmons in noble metal nanospheroids,” J. Phys. Chem. C 115, 10321–10332 (2011). [CrossRef]
  12. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  13. D. Sarid, “Long-range surface-plasma waves on very thin metal-films,” Phys. Rev. Lett. 47, 1927–1930 (1981). [CrossRef]
  14. A. Moradi, “Plasmon hybridization in metallic nanotubes,” J. Phys. Chem. Solids 69, 2936–2938 (2008). [CrossRef]
  15. http://www.lumerical.com/.
  16. A. Moradi, “Plasmon hybridization in tubular metallic nanostructures,” Physica B 405, 2466–2469 (2010). [CrossRef]
  17. O. Guilatt, B. Apter, and U. Efron, “Light absorption enhancement in thin silicon film by embedded metallic nanoshells,” Opt. Lett. 35, 1139–1141 (2010). [CrossRef] [PubMed]
  18. O. Guilatt, B. Apter, and U. Efron, “Light absorption enhancement in thin silicon film by embedded metallic nanoshells: erratum,” Opt. Lett. 36, 1239 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MPG (3710 KB)      QuickTime
» Media 2: MPG (3762 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited