OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 28 — Oct. 1, 2011
  • pp: 5484–5498

Method of excess fractions with application to absolute distance metrology: theoretical analysis

Konstantinos Falaggis, David P. Towers, and Catherine E. Towers  »View Author Affiliations


Applied Optics, Vol. 50, Issue 28, pp. 5484-5498 (2011)
http://dx.doi.org/10.1364/AO.50.005484


View Full Text Article

Enhanced HTML    Acrobat PDF (755 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The method of excess fractions (EF) is well established to resolve the fringe order ambiguity generated in interferometric detection. Despite this background, multiwavelength interferometric absolute long distance measurements have only been reported with varying degrees of success. In this paper we present a theoretical model that can predict the unambiguous measurement range in EF based on the selected measurement wavelengths and phase noise. It is shown that beat wavelength solutions are a subset of this theoretical model. The performance of EF, for a given phase noise, is shown to be equivalent to beat techniques but offers many alternative sets of measurement wavelengths and therefore EF offer significantly greater flexibility in experimental design.

© 2011 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(100.2650) Image processing : Fringe analysis
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.4800) Instrumentation, measurement, and metrology : Optical standards and testing

ToC Category:
Image Processing

History
Original Manuscript: May 23, 2011
Revised Manuscript: July 23, 2011
Manuscript Accepted: July 25, 2011
Published: September 30, 2011

Citation
Konstantinos Falaggis, David P. Towers, and Catherine E. Towers, "Method of excess fractions with application to absolute distance metrology: theoretical analysis," Appl. Opt. 50, 5484-5498 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-28-5484


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. A. Michelson and J. R. Benoit, “Détermination expérimentale de la valeur du mètre en longueurs d'ondes lumineuses,” Trav. Et Mem. Bur. Int. Poids es Mes. 11, 1–42 (1895).
  2. J. Ye, “Absolute measurement of a long, arbitrary distance to less than an optical fringe,” Opt. Lett. 29, 1153–1155 (2004). [CrossRef] [PubMed]
  3. K.-N. Joo, Y. Kim, and S.-W. Kim, “Distance measurements by combined method based on a femtosecond pulse laser,” Opt. Express 16, 19799–19806 (2008). [CrossRef] [PubMed]
  4. Y. Salvadé, N. Schuhler, S. Lévêque, and S. Le Floch, “High-accuracy absolute distance measurement using frequency comb referenced multiwavelength source,” Appl. Opt. 47, 2715–2720 (2008). [CrossRef] [PubMed]
  5. O. P. Lay, S. Dubovitsky, R. D. Peters, J. P. Burger, S.-W. Ahn, W. H. Steier, H. R. Fetterman, and Y. Chang, “MSTAR: a submicrometer absolute metrology system,” Opt. Lett. 28, 890–892 (2003). [CrossRef] [PubMed]
  6. J. E. Decker, J. R. Miles, A. A. Madej, R. F. Siemsen, K. J. Siemsen, S. de Bonth, K. Bustraan, S. Temple, and J. R. Pekelsky, “Increasing the range of unambiguity in step-height measurement with multiple-wavelength interferometry-application to absolute long gauge block measurement,” Appl. Opt. 42, 5670–5678 (2003). [CrossRef] [PubMed]
  7. J. Jin, Y.-J. Kim, Y. Kim, S.-W. Kim, and C.-S. Kang, “Absolute length calibration of gauge blocks using optical comb of a femtosecond pulse laser,” Opt. Express 14, 5968–5974 (2006). [CrossRef] [PubMed]
  8. M. Shao, “Astrometry with SIM PlanetQuest,” Proceedings of the International Astronomical Union, Vol.  3 (Cambridge University, 2007), pp. 231–237. [CrossRef]
  9. P. R. Lawson, O. P. Lay, K. J. Johnston, C. A. Beichman, S. C. Unwin, S. R. Martin, S. L. Hunyadi, O. Absil, R. L. Akeson, J. Bally, P. Bordé, D. Crisp, W. C. Danchi, D. Defrère, C. Eiroa, P. Falkowski, T. Henning, P. M. Hinz, J. M. Hollis, D. C. Hyland, L. Kaltenegger, L. Labadie, B. F. Lane, G. Laughlin, A. Léger, R. Liseau, D. Mawet, B. Mennesson, J. D. Monnier, A. C. Quillen, H. J. A. Röttgering, F. Selsis, E. Serabyn, D. J. Wilner, N. J. Woolf, W. A. Traub, R. O. Gappinger, A. Ksendzov, R. D. Peters, and D. P. Scharf, “Terrestrial Planet Finder Interferometer (TPF-I) Whitepaper for the AAAC Exoplanet Task Force,” http://planetquest1.jpl.nasa.gov/TPF-I/TPFIwhitepaper.pdf.
  10. S. Lévéque, Y. Salvadé, R. Dandliker, and O. Scherler,“High-accuracy laser metrology enhances the VLTI,” Laser Focus World 38, 101–104 (2002).
  11. K. Creath, “Phase measurement interferometry techniques,” Progress in Optics 26, 350–393 (1988). [CrossRef]
  12. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry ,” J. Opt. Soc. Am. 72, 156–160 (1982). [CrossRef]
  13. K. Falaggis, D. P. Towers, and C. E. Towers, “Theoretical analysis and optimisation of the method of excess fractions for long-range metrology,” Proc. SPIE 7790, 779009 (2010). [CrossRef]
  14. P. de Groot, “Design of error-compensating algorithms for sinusoidal phase shifting interferometry,” Appl. Opt. 48, 6788–6796 (2009). [CrossRef] [PubMed]
  15. K. E. Gillilland, H. D. Cook, K. D. Mielenz, and R. B. Stephens, “Use of a laser for length measurement by fringe counting,” Metrologia 2, 95–98 (1966). [CrossRef]
  16. C. R. Tilford, “Analytical procedure for determining lengths from fractional fringes,” Appl. Opt. 16, 1857–1860 (1977). [CrossRef] [PubMed]
  17. J. C. Wyant, “Testing aspherics using two-wavelength holography,” Appl. Opt. 10, 2113–2118 (1971). [CrossRef] [PubMed]
  18. Y.-Yen Cheng and J. C. Wyant, “Two-wavelength phase shifting interferometry,” Appl. Opt. 23, 4539–4543 (1984). [CrossRef] [PubMed]
  19. H. Zhao, W. Chen, and Y. Tan, “Phase-unwrapping algorithm for the measurement of three-dimensional object shapes,” Appl. Opt. 33, 4497–4500 (1994). [CrossRef] [PubMed]
  20. C. E. Towers, D. P. Towers, and J. D. C. Jones, “Optimum frequency selection in multifrequency interferometry,” Opt. Lett. 28, 887–889 (2003). [CrossRef] [PubMed]
  21. W. Nadeborn, P. Andra, and W. Osten, “A robust procedure for absolute phase measurement,” Opt. Lasers Eng. 24, 245–260 (1996). [CrossRef]
  22. J. M. Huntley and H. O. Saldner, “Error-reduction methods for shape measurement by temporal phase unwrapping,” J. Opt. Soc. Am. A 14, 3188–3196 (1997). [CrossRef]
  23. J. Burke, T. Bothe, W. Osten, and C. F. Hess, “Reverse engineering by fringe projection,” Proc. SPIE 4778, 312–324(2002). [CrossRef]
  24. K. Falaggis, D. P. Towers, and C. E. Towers, “Multiwavelength interferometry: extended range metrology,” Opt. Lett. 34, 950–952 (2009). [CrossRef] [PubMed]
  25. P. J. de Groot, “Extending the unambiguous range of two-color interferometers,” Appl. Opt. 33, 5948–5953 (1994). [CrossRef] [PubMed]
  26. R. Benoît, “Application des phénomènes d'interférence à des déterminations métrologiques,” Phys. Radium 7, 57–68 (1898).
  27. M. Born and E. Wolf, Principles of Optics, (Cambridge University, 2006), Chap. 7.6.
  28. P. Hariharan, Optical Interferometry, (Academic, 1985).
  29. V. I. Gushov and Y. N. Solodkin, “Automatic processing of fringe patterns in integer interferometers,” Opt. Lasers Eng. 14, 311–324 (1991). [CrossRef]
  30. J. Zhong and Y. Zhang, “Absolute phase-measurement technique based on number theory in multifrequency grating projection profilometry,” Appl. Opt. 40, 492–500(2001). [CrossRef]
  31. J.-L. Li, H.-J. Su, and X.-Y. Su, “Two-frequency grating used in phase-measuring profilometry,” Appl. Opt. 36, 277–280(1997). [CrossRef] [PubMed]
  32. Y. Surrel, “Two-step temporal phase unwrapping in profilometry” Proc. SPIE 3098, 271–282 (1997). [CrossRef]
  33. Y. Hao, Y. Zhao, and D. Li, “Multifrequency grating projection profilometry based on the nonlinear excess fraction method,” Appl. Opt. 38, 4106–4110 (1999). [CrossRef]
  34. A. Pförtner and J. Schwider, “Red-green-blue interferometer for the metrology of discontinuous structures,” Appl. Opt. 42, 667–673 (2003). [CrossRef] [PubMed]
  35. C. E. Towers, D. P. Towers, and J. D. C. Jones, “Time efficient Chinese remainder theorem algorithm for full-field fringe phase analysis in multi-wavelength interferometry,” Opt. Express 12, 1136–1143. [CrossRef] [PubMed]
  36. C. E. Towers, D. P. Towers, and J. D. C. Jones, “Generalized multi-frequency selection for full-field interferometric shape measurement,” Proc. SPIE 5502, 406–409 (2004). [CrossRef]
  37. K. Falaggis, D. P. Towers, and C. E. Towers, “Optimum wavelength selection for the method of excess fractions,” Proc. SPIE 7063, 70630V (2008). [CrossRef]
  38. S. Hyun, Y.-J. Kim, Y. Kim, J. Jin, and S.-W. Kim, “Absolute length measurement with the frequency comb of a femtosecond laser,” Meas. Sci. Technol. 20, 095302(2009). [CrossRef]
  39. J. M. Huntley, “Random phase measurement errors in digital speckle pattern interferometry,” Opt. Lasers Eng. 26, 131–150 (1997). [CrossRef]
  40. K. Houairi and F. Cassaing, “Two-wavelength interferometry: extended range and accurate optical path difference analytical estimator,” J. Opt. Soc. Am. A 26, 2503–2511(2009). [CrossRef]
  41. M. Loefdahl and H. Eriksson, “An algorithm for resolving 2pi ambiguities in interferometric measurements by use of multiple wavelength,” Opt. Eng. 40, 984–990 (2001). [CrossRef]
  42. A. Hurwitz, “Über eine besondere Art der Kettenbruch-Entwicklung reeller Grössen,” Acta Math. 12, 367–405(1889). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited