OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 28 — Oct. 1, 2011
  • pp: 5503–5507

High sensitivity of taper-based Mach–Zehnder interferometer embedded in a thinned optical fiber for refractive index sensing

J. Yang, L. Jiang, S. Wang, B. Li, M. Wang, H. Xiao, Y. Lu, and H. Tsai  »View Author Affiliations


Applied Optics, Vol. 50, Issue 28, pp. 5503-5507 (2011)
http://dx.doi.org/10.1364/AO.50.005503


View Full Text Article

Enhanced HTML    Acrobat PDF (533 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A taper-based Mach–Zehnder interferometer (MZI) embedded in a thinned optical fiber is demonstrated as a highly sensitive refractive index (RI) sensor. A RI sensitivity of 2210.84 nm / RIU (refractive index unit) is obtained at the external RI of 1.40, which is ten times higher than that of normal taper- and long-period fiber grating (LPFG)-based sensors. The sensitivity can be further improved by decreasing the diameter of the thinned fiber and increasing the interferometer length of the MZI. The proposed MZIs have lower temperature sensitivities compared with normal fiber sensors, which is a desirable merit for RI sensors to reduce the cross sensitivity caused by thermal drift.

© 2011 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(130.6010) Integrated optics : Sensors
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: May 17, 2011
Revised Manuscript: July 5, 2011
Manuscript Accepted: July 5, 2011
Published: September 30, 2011

Citation
J. Yang, L. Jiang, S. Wang, B. Li, M. Wang, H. Xiao, Y. Lu, and H. Tsai, "High sensitivity of taper-based Mach–Zehnder interferometer embedded in a thinned optical fiber for refractive index sensing," Appl. Opt. 50, 5503-5507 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-28-5503


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Zhang, X. Tang, J. Dong, T. Wei, and H. Xiao, “Zeolite thin film-coated long period fiber grating sensor for measuring trace chemical,” Opt. Express 16, 8317–8323 (2008). [CrossRef] [PubMed]
  2. N. Lin, L. Jiang, S. Wang, L. Yuan, H. Xiao, Y. Lu, and H. L. Tsai, “Ultrasensitive chemical sensors based on whispering gallery modes in a microsphere coated with zeolite,” Appl. Opt. 49, 6463–6471 (2010). [CrossRef] [PubMed]
  3. N. Lin, L. Jiang, S. Wang, H. Xiao, Y. Lu, and H. L. Tsai, “Thermostable refractive index sensors based on whispering gallery modes in a microsphere coated with poly(methyl methacrylate),” Appl. Opt. 50, 992–998 (2011). [CrossRef] [PubMed]
  4. Y. Wang, M. Yang, D. N. Wang, S. Liu, and P. Lu, “Fiber in-line Mach–Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity,” J. Opt. Soc. Am. B 27, 370–374 (2010). [CrossRef]
  5. J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. He, “Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor,” IEEE Photon. Technol. Lett. 17, 1247–1249 (2005). [CrossRef]
  6. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692–694 (1996). [CrossRef] [PubMed]
  7. X. Chen, K. Zhou, L. Zhang, and I. Bennion, “Simultaneous measurement of temperature and external refractive index by use of a hybrid grating in D fiber with enhanced sensitivity by HF etching,” Appl. Opt. 44, 178–182 (2005). [CrossRef] [PubMed]
  8. A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16, 1149–1151 (2004). [CrossRef]
  9. X. Fang, C. R. Liao, and D. N. Wang, “Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing,” Opt. Lett. 35, 1007–1009 (2010). [CrossRef] [PubMed]
  10. Z. B. Tian, S. S.-H. Yam, and H. P. Loock, “Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber,” Opt. Lett. 33, 1105–1107 (2008). [CrossRef] [PubMed]
  11. Z. B. Tian, S. S.-H. Yam, and H. P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photon. Technol. Lett. 20, 1387–1389 (2008). [CrossRef]
  12. D. Monzón-Hernández, V. P. Minkovich, J. Villatoro, M. P. Kreuzer, and G. Badenes, “Photonic crystal fiber microtaper supporting two selective higher-order modes with high sensitivity to gas molecules,” Appl. Phys. Lett. 93, 081106(2008). [CrossRef]
  13. R. Jha, J. Villatoro, G. Badenes, and V. Pruneri, “Refractometry based on a photonic crystal fiber interferometer,” Opt. Lett. 34, 617–619 (2009). [CrossRef] [PubMed]
  14. C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys. A 97, 751–757 (2009). [CrossRef]
  15. C. H. Lin, Z. H. Rao, L. Jiang, W. J. Tsai, P. H. Wu, and H. L. Tsai, “Investigations of femtosecond–nanosecond dual-beam laser ablation of dielectrics,” Opt. Lett. 35, 2490–2492 (2010). [CrossRef] [PubMed]
  16. C. H. Lin, L. Jiang, H. Xiao, Y. H. Chai, S. J. Chen, and H. L. Tsai, “Fabry–Perot interferometer embedded in a glass chip fabricated by femtosecond laser,” Opt. Lett. 34, 2408–2410(2009). [CrossRef] [PubMed]
  17. L. Zhao, L. Jiang, S. Wang, H. Xiao, Y. Lu, and H. L. Tsai, “A high-quality Mach–Zehnder interferometer fiber sensor by femtosecond laser one-step processing,” Sensors 11, 54–61(2010). [CrossRef]
  18. Y. Wang, D. N. Wang, M. Yang, W. Hong, and P. Lu, “Refractive index sensor based on a microhole in single-mode fiber created by the use of femtosecond laser micromachining,” Opt. Lett. 34, 3328–3330 (2009). [CrossRef] [PubMed]
  19. N. K. Chen and Z. Z. Feng, “Effect of gain-dependent phase shift for tunable abrupt-tapered Mach–Zehnder interferometers,” Opt. Lett. 35, 2109–2111 (2010). [CrossRef] [PubMed]
  20. X. Z. Wang, Y. Li, and X. Y. Bao, “C- and L-band tunable fiber ring laser using a two-taper Mach–Zehnder interferometer filter,” Opt. Lett. 35, 3354–3356 (2010). [CrossRef] [PubMed]
  21. P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131110 (2009). [CrossRef]
  22. Z. B. Tian, S. S.-H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H.-P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach–Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photon. Technol. Lett. 20, 626–628 (2008). [CrossRef]
  23. B. Dong, L. Wei, and D. P. Zhou, “Coupling between the small-core-diameter dispersion compensation fiber and single-mode fiber and its applications in fiber lasers,” J. Lightwave Technol. 28, 1363–1367 (2010). [CrossRef]
  24. B. B. Gu, M. J. Yin, A. P. Zhang, J. W. Qian, and S. He, “Low-cost high-performance fiber-optic pH sensor based on thin-core fiber modal interferometer,” Opt. Express 17, 22296–22302 (2009). [CrossRef]
  25. X. Shu, L. Zhang, and I. Bennion, “Sensitivity characteristics of long-period fiber gratings,” J. Lightwave Technol. 20, 255–266 (2002). [CrossRef]
  26. K. S. Chiang, Y. Q. Liu, M. Nar Ng, and X. Y. Dong, “Analysis of etched long-period fiber grating and its response to external refractive index,” Electron. Lett. 36, 966–967 (2000). [CrossRef]
  27. Y. P. Wang, L. M. Xiao, D. N. Wang, and W. Jin, “Highly sensitive long-period fiber-grating strain sensor with low temperature sensitivity,” Opt. Lett. 31, 3414–3416 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited