OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 28 — Oct. 1, 2011
  • pp: 5513–5523

Evaluation of amplitude encoded fringe patterns using the bidimensional empirical mode decomposition and the 2D Hilbert transform generalizations

M. Wielgus and K. Patorski  »View Author Affiliations


Applied Optics, Vol. 50, Issue 28, pp. 5513-5523 (2011)
http://dx.doi.org/10.1364/AO.50.005513


View Full Text Article

Enhanced HTML    Acrobat PDF (1302 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose an application for a bidimensional empirical mode decomposition and a Hilbert transform algorithm (BEMD-HT) in processing amplitude modulated fringe patterns. In numerical studies we investigate the influence of parameters of the algorithm and a fringe pattern under study on the demodulation results to optimize the procedure. A spiral phase method and the angle-oriented partial Hilbert transform are introduced to the BEMD-HT and tested. A postprocessing filtration method for BEMD-HT is proposed. Results of processing experimental data, such as vibration mode patterns obtained by time-average interferometry, correspond richly with numerical findings. They compare very well with the results of our previous investigations using the temporal phase-shifting (TPS) method and the continuous wavelet transform (CWT). Not needing to perform phase-shifting represents significant simplification of the experimental procedure in comparison with the TPS method.

© 2011 Optical Society of America

OCIS Codes
(100.2650) Image processing : Fringe analysis
(120.2650) Instrumentation, measurement, and metrology : Fringe analysis
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.4120) Instrumentation, measurement, and metrology : Moire' techniques
(120.7280) Instrumentation, measurement, and metrology : Vibration analysis

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: May 12, 2011
Revised Manuscript: July 14, 2011
Manuscript Accepted: July 14, 2011
Published: September 30, 2011

Citation
M. Wielgus and K. Patorski, "Evaluation of amplitude encoded fringe patterns using the bidimensional empirical mode decomposition and the 2D Hilbert transform generalizations," Appl. Opt. 50, 5513-5523 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-28-5513


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Schwider, “Advanced evaluation techniques in interferometry,” in Progress in Optics, E.Wolf ed. (Elsevier, 1990), Vol.  28, pp. 271–359. [CrossRef]
  2. J. E. Greivenkamp and J. H. Brunning, “Phase shifting interferometry,” in Optical Shop Testing, D.Malacara ed. (Wiley, 1992), pp. 501–598.
  3. D.Robinson and G.Read, eds., Interferogram Analysis: Digital Fringe Pattern Measurement (Institute of Physics, 1993).
  4. D. Malacara, M. Servin, and Z. Malacara, Interferogram Analysis for Optical Testing (Marcel Dekker, 1998).
  5. H. Osterberg, “An interferometer method of studying the vibrations of an oscillating quartz plate,” J. Opt. Soc. Am. 22, 19–35 (1932). [CrossRef]
  6. G. Rosvold, “Video-based vibration analysis using projected fringes,” Appl. Opt. 33, 775–786 (1994). [CrossRef] [PubMed]
  7. A. Bosseboeuf and S. Petitgrand, “Application of microscopic interferometry in the MEMS field,” Proc. SPIE 5145, 1–16(2003). [CrossRef]
  8. L. Salbut, K. Patorski, M. Jozwik, J. Kacperski, C. Gorecki, A. Jacobelli, and T. Dean, “Active micro-elements testing by interferometry using time-average and quasi-stroboscopic techniques,” Proc. SPIE 5145, 23–32 (2003). [CrossRef]
  9. M. Ragulskis, R. Maskeliunas, and V. Turla, “Investigation of dynamic displacements of lithographic press rubber roller by time average geometric moiré,” Opt. Lasers Eng. 43, 951–962(2005). [CrossRef]
  10. J. D. Hovanesian and Y. Hung, “Moiré contour-sum, contour difference and vibration analysis of arbitrary objects,” Appl. Opt. 10, 2734–2738 (1971). [CrossRef] [PubMed]
  11. O. Bryngdahl, “Characteristics of superposed patterns in optics,” J. Opt. Soc. Am. 66, 87–94 (1976). [CrossRef]
  12. K. Patorski, Handbook of the Moiré Fringe Technique(Elsevier, 1993).
  13. M. Nishida and H. Saito, “A new interferometric method of two-dimensional stress analysis,” Exp. Mech. 4, 366–376(1964). [CrossRef]
  14. R. J. Sanford and A. J. Durelli, “Interpretation of fringes in stress-holo-interferometry,” Exp. Mech. 11, 161–166 (1971). [CrossRef]
  15. B. Chatelain, “Holographic photo-elasticity: independent observation of the isochromatic and isopachic fringes for a single model subjected to only one process,” Opt. Laser Technol. 5, 201–204 (1973). [CrossRef]
  16. A. Styk and K. Patorski, “Fizeau interferometer for quasi parallel optical plate testing,” Proc. SPIE 7063, 70630P (2008). [CrossRef]
  17. K. Patorski and K. Pokorski, “Examination of singular scalar fields using wavelet processing of fork fringes,” Appl. Opt. 50, 773–781 (2011). [CrossRef] [PubMed]
  18. K. Patorski, Z. Sienicki, and A. Styk, “Phase-shifting method contrast calculations in time-averaged interferometry: error analysis,” Opt. Eng. 44, 065601 (2005). [CrossRef]
  19. K. Patorski and A. Styk, “Interferogram intensity modulation calculations using temporal phase shifting: error analysis,” Opt. Eng. 45, 085602 (2006). [CrossRef]
  20. S. Petitgrand, R. Yahiaoui, A. Bosseboeuf, and K. Danaie, “Quantitative time-averaged microscopic interferometry for micromechanical device vibration mode characterization,” Proc. SPIE 4400, 51–60 (2001). [CrossRef]
  21. A. Styk and K. Patorski, “Analysis of systematic errors in spatial carrier phase shifting applied to interferogram intensity modulation determination,” Appl. Opt. 46, 4613–4624(2007). [CrossRef] [PubMed]
  22. K. Pokorski and K. Patorski, “Visualization of additive-type moiré and time-average fringe patterns using the continuous wavelet transform,” Appl. Opt. 49, 3640–3651(2010). [CrossRef] [PubMed]
  23. N. E. Huang, Z. Sheng, S. R. Long, M. C. Wu, W. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for non-linear and non-stationary time series analysis,” Proc. R. Soc. A 454, 903–995 (1998). [CrossRef]
  24. M. B. Bernini, G. E. Galizzi, A. Federico, and G. H. Kaufmann, “Evaluation of the 1D empirical mode decomposition method to smooth digital speckle pattern interferometry fringes,” Opt. Commun. 45, 723–729 (2007).
  25. F. A. Marengo-Rodriguez, A. Federico, and G. H. Kaufmann, “Phase measurement improvement in temporal speckle pattern interferometry using empirical mode decomposition,” Opt. Commun. 275, 38–41 (2007). [CrossRef]
  26. F. A. Marengo-Rodriguez, A. Federico, and G. H. Kaufmann, “Hilbert transform analysis of a time series of speckle interferograms with a temporal carrier,” Appl. Opt. 47, 1310–1316(2008). [CrossRef]
  27. A. Federico and G. H. Kaufmann, “Phase recovery in temporal speckle pattern interferometry using the generalized S-transform,” Opt. Lett. 33, 866–868 (2008). [CrossRef] [PubMed]
  28. S. Equis and P. Jacquot, “Phase extraction in dynamic speckle interferometry with empirical mode decomposition and Hilbert transform,” Strain 46, 550–558 (2010). [CrossRef]
  29. S. Equis and P. Jacquot, “The empirical mode decomposition: a must have tool in speckle interferometry?” Opt. Express 17, 611–623 (2009). [CrossRef] [PubMed]
  30. X. Zhou, H. Zhao, and T. Jiang, “Adaptive analysis of optical fringe patterns using ensemble empirical mode decomposition algorithm,” Opt. Lett. 34, 2033–2035 (2009). [CrossRef] [PubMed]
  31. M. B. Bernini, A. Federico, and G. H. Kaufmann, “Noise reduction in digital speckle pattern interferometry using bidimensional empirical mode decomposition,” Appl. Opt. 47, 2592–2598 (2008). [CrossRef] [PubMed]
  32. M. B. Bernini, A. Federico, and G. H. Kaufmann, “Normalization of fringe patterns using the bidimensional empirical mode decomposition and the Hilbert transform,” Appl. Opt. 48, 6862–6869 (2009). [CrossRef] [PubMed]
  33. M. Bernini, A. Federico, and G. Kaufmann, “Phase measurement in temporal speckle pattern interferometry signals presenting low modulated regions by means of the bidimensional empirical mode decomposition,” Appl. Opt. 50, 641–647(2011). [CrossRef] [PubMed]
  34. Z. Wu and N. Huang, “Ensemble empirical mode decomposition: a noise assisted data analysis method,” Tech. Rep. No. 193, Centre for Ocean-Land-Atmosphere Studies(2005).
  35. Z. Liu, H. Wang, and S. Peng, “Texture classification through empirical mode decomposition,” in Proceedings of the 17th International Conference on Pattern Recognition (ICPR 2004) (IEEE, 2004), pp. 803–806.
  36. C. Damerval, S. Meignen, and V. Perrier, “A fast algorithm for bidimensional EMD,” IEEE Signal Process. Lett. 12, 701–704(2005). [CrossRef]
  37. C. Barber, D. Dobkin, and H. Huhdanpaa, “The Quickhull algorithm for convex hulls,” ACM Trans. Math. Softw. 22, 469–483 (1996). [CrossRef]
  38. J. C. Nunes, Y. Bouaoune, E. Delechelle, O. Niang, and .Ph. Bunel, “Image analysis by bidimensional empirical mode decomposition,” Image Vision Comput. 21, 1019–1026 (2003). [CrossRef]
  39. X. Yang, Q. Yu, and S. Fu, “A combined method for obtaining fringe orientations of ESPI,” Opt. Commun. 273, 60–66(2007). [CrossRef]
  40. T. Bülow and G. Sommer, “Hypercomplex signals—a novel extension of the analytic signal to the multidimensional case,” IEEE Trans. Signal Process. 49, 2844–2852 (2001). [CrossRef]
  41. M. Felsberg and G. Sommer, “The monogenic signal,” IEEE Trans. Signal Process. 49, 3136–3144 (2001). [CrossRef]
  42. K. G. Larkin, D. J. Bone, and M. A. Oldfield, “Natural demodulation of two-dimensional fringe patterns. I. General background of the spiral phase quadrature transform,” J. Opt. Soc. Am. 18, 1862–1870 (2001). [CrossRef]
  43. R. Onodera, Y. Yamamoto, and Y. Ishii, “Signal processing of interferogram using a two-dimensional discrete Hilbert transform,” in Fringe 2005, the 5th International Workshop on Automatic Processing of Fringe Patterns, W.Osten ed. (Springer, 2006), pp. 82–89.
  44. T. Bülow, D. Pallek, and G. Sommer, “Riesz transforms for the isotropic estimation of the local phase of moiré interferograms,” presented at the 22nd DAGM Symposium Mustererkennung, (Heidelberg, 2000).
  45. B. Boashash, “Estimating and interpreting the instantaneous frequency of a signal,” Proc. IEEE 80, 520–568(1992). [CrossRef]
  46. M. Venouziou and H. Zhang, “Characterizing the Hilbert transform by the Bedrosian theorem,” J. Math. Anal. Appl. 338, 1477–1481 (2008). [CrossRef]
  47. K. G. Larkin, D. J. Bone, and M. A. Oldfield, “Natural demodulation of two-dimensional fringe patterns. II. Stationary phase analysis of the spiral phase quadrature transform,” J. Opt. Soc. Am. 18, 1871–18810 (2001). [CrossRef]
  48. Q. He, R. Gao, and P. Freedson, “Midpoint-based empirical decomposition for nonlinear trend estimation,” in Proceedings of IEEE Engineering in Medicine and Biology Society Conference 2009 (IEEE, 2009), pp. 2228–2231.
  49. K. Patorski, D. Post, R. Czarnek, and Y. Guo, “Real-time optical differentiation for moire interferometry,” Appl. Opt. 26, 1977–1982 (1987). [CrossRef] [PubMed]
  50. K. G. Larkin, “Efficient nonlinear algorithm for envelope detection in white light interferometry,” J. Opt. Soc. Am. A 13, 832–843 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited