OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 28 — Oct. 1, 2011
  • pp: 5545–5554

Hyperspectral target detection via discrete wavelet-based spectral fringe-adjusted joint transform correlation

Adel A. Sakla, Wesam A. Sakla, and Mohammad S. Alam  »View Author Affiliations


Applied Optics, Vol. 50, Issue 28, pp. 5545-5554 (2011)
http://dx.doi.org/10.1364/AO.50.005545


View Full Text Article

Enhanced HTML    Acrobat PDF (783 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Spectral variability remains a major challenge for target detection in hyperspectral imagery (HSI). Recently, the spectral fringe-adjusted joint transform correlation (SFJTC) technique has been used effectively for hyperspectral target detection applications. In this paper, we propose to use discrete wavelet transform (DWT) coefficients of the signatures as features for detection in order to make the SFJTC technique more insensitive to spectral variability. We devised a supervised training algorithm that uses the pure target signature and randomly selected samples from input scenery to select an optimal set of DWT coefficients for detection. We have inserted target signatures into urban and vegetative hyperspectral scenery with varying levels of spectral variability to explore the performance of our DWT-based SFJTC technique in different operating conditions. Detection results in the form of receiver-operating-characteristic (ROC) curves and area-under-the-ROC (AUROC) curves show that the proposed scheme yields the largest mean AUROC values compared to SFJTC using the original signatures and traditional hyperspectral detection algorithms.

© 2011 Optical Society of America

OCIS Codes
(100.0100) Image processing : Image processing
(100.2000) Image processing : Digital image processing
(100.4145) Image processing : Motion, hyperspectral image processing

ToC Category:
Image Processing

History
Original Manuscript: March 7, 2011
Revised Manuscript: July 27, 2011
Manuscript Accepted: August 30, 2011
Published: September 30, 2011

Citation
Adel A. Sakla, Wesam A. Sakla, and Mohammad S. Alam, "Hyperspectral target detection via discrete wavelet-based spectral fringe-adjusted joint transform correlation," Appl. Opt. 50, 5545-5554 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-28-5545


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. M. Yamany, A. A. Farag, and S.-Y. Hsu, “A fuzzy hyperspectral classifier for automatic target recognition (ATR) systems,” Patt. Recogn. Lett. 20, 1431–1438 (1999). [CrossRef]
  2. D. Manolakis and G. Shaw, “Detection algorithms for hyperspectral imaging applications,” IEEE Signal Process. Mag. 19 (1), 29–43 (2002). [CrossRef]
  3. D. Manolakis, D. Marden, and G. Shaw, “Hyperspectral image processing for automatic target detection applications,” Lincoln Lab. J. 14, 79–114 (2003).
  4. D. Manolakis, “Taxonomy of detection algorithms for hyperspectral imaging applications,” Opt. Eng. 44, 066403 (2005). [CrossRef]
  5. M. S. Alam and S. Ochilov, “Spectral fringe-adjusted joint transform correlation,” Appl. Opt. 49, B18–B25 (2010). [CrossRef] [PubMed]
  6. W. Sakla, A. Sakla, and M. S. Alam, “Deterministic hyperspectral target detection using the DWT and spectral fringe-adjusted joint transform correlation,” (invited paper) Proc. SPIE 6967, 69670B (2008). [CrossRef]
  7. C.-I. Chang, Hyperspectral Imaging: Techniques for Spectral Detection and Classification (Kluwer Academic/Plenum, 2003).
  8. C.-I. Chang, “An information-theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image analysis,” IEEE Trans. Inf. Theory 46, 1927–1932(2000). [CrossRef]
  9. C. S. Weaver and J. W. Goodman, “A technique for optically convolving two functions,” Appl. Opt. 5, 1248–1249 (1966). [CrossRef] [PubMed]
  10. F. T. S. Yu and J. E. Ludman, “Microcomputer based programmable joint transform correlator for automatic pattern recognition and identification,” Opt. Lett. 11, 395–397 (1986). [CrossRef] [PubMed]
  11. S. Jutamulia, G. M. Storti, D. A. Gregory, and J. C. Kirsch, “Illumination-independent high-efficiency joint transform correlator,” Appl. Opt. 30, 4173–4175 (1991). [CrossRef] [PubMed]
  12. M. S. Alam and M. A. Karim, “Fringe adjusted joint transform correlation,” Appl. Opt. 32, 4344–4350 (1993). [CrossRef] [PubMed]
  13. M. S. Alam and M. A. Karim, “Multiple target detection using a modified fringe-adjusted joint transform correlator,” Opt. Eng. 33, 1610–1617 (1994). [CrossRef]
  14. M. S. Alam, A. Bal, E. H. Horache, S. F. Goh, C. H. Loo, S. P. Regula, and A. Sharma, “Metrics for evaluating the performance of joint-transform-correlation-based target recognition and tracking algorithms,” Opt. Eng. 44, 067005 (2005). [CrossRef]
  15. R. A. DeVore, B. Jawerth, and B. J. Lucier, “Image compression through wavelet transform coding,” IEEE Trans. Inf. Theory 38, 719–746 (1992). [CrossRef]
  16. S. G. Chang, B. Yu, and M. Vetterli, “Adaptive wavelet thresholding for image denoising and compression,” IEEE Trans. Image Process. 9, 1532–1546 (2000). [CrossRef]
  17. T. Chang and C. Kuo, “Texture analysis and classification with tree-structured wavelet transform,” IEEE Trans. Image Process. 2, 429–441 (1993). [CrossRef] [PubMed]
  18. L. M. Bruce and J. Li, “Wavelets for computationally efficient hyperspectral derivative analysis,” IEEE Trans. Geosci. Remote Sens. 39, 1540–1546 (2001). [CrossRef]
  19. L. M. Bruce, C. H. Koger, and J. Li, “Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction,” IEEE Trans. Geosci. Remote Sens. 40, 2331–2338 (2002). [CrossRef]
  20. S. Kaewpijit, J. Le Moigne, and T. El-Ghazawi, “Automatic reduction of hyperspectral imagery using wavelet spectral analysis,” IEEE Trans. Geosci. Remote Sens. 41, 863–871(2003). [CrossRef]
  21. L. M. Bruce, C. Morgan, and S. Larsen, “Automated detection of subpixel hyperspectral targets with continuous and discrete wavelet transforms,” IEEE Trans. Geosci. Remote Sens. 39, 2217–2226 (2001). [CrossRef]
  22. S. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,” IEEE Trans. Pattern Anal. Machine Intell. 11, 674–693 (1989). [CrossRef]
  23. M. Vetterli and J. Kovacevic, Wavelets and Subband Coding (Prentice-Hall, 1995).
  24. S. Mallat, A Wavelet Tour of Signal Processing, 2nd. ed.(Academic, 1999).
  25. ITRES Research, http://www.itres.com, accessed in 2007.
  26. R. A. Schowengerdt, Remote Sensing, 2nd ed. (Academic, 1997).
  27. I. C. Chein and D. C. Heinz, “Constrained subpixel target detection for remotely sensed imagery,” IEEE Trans. Geosci. Remote Sens. 38, 1144–1159 (2000). [CrossRef]
  28. A. K. Jain, Fundamentals of Digital Image Processing(Prentice-Hall, 1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited