Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Approach to photorealistic halo simulations

Not Accessible

Your library or personal account may give you access

Abstract

A multiple-scattering Monte Carlo model that can produce near-photographic quality images is developed and used to simulate several dramatic halo displays. The model atmosphere contains an absorbing ozone layer plus two clear, molecular air layers with Rayleigh scattering surrounding a cloud layer and an atmospheric boundary layer with aerosol particles subject to Lorentz–Mie scattering. Halos are produced by right hexagonal or pyramidal crystals that reflect and refract according to geometric optics without diffraction, although “junk” crystals with a pronounced forward-scattering peak but no halo peaks may be included to simulate typical, faint halos. Model parameters include ozone height and content, surface and cloud pressure, cloud optical thickness, crystal shapes, orientations and abundances, atmospheric turbidity, aerosol radius, and albedo. Beams for each wavelength are sorted into small bins as halo beams if they have been scattered once only by a single crystal and otherwise as sky beams, which are smoothed and combined with the halo beams to produce images. Multiple scattering generally vitiates halos, but extremely rare halos, such as Kern’s arc, can be produced if a significant fraction of crystals in optically thick clouds have identical shapes and are highly oriented. Albedo is a model by-product with potential value in climate studies.

© 2011 Optical Society of America

Full Article  |  PDF Article
More Like This
Simulating halos and coronas in their atmospheric environment

Stanley David Gedzelman
Appl. Opt. 47(34) H157-H166 (2008)

Simulating rainbows and halos in color

Stanley David Gedzelman
Appl. Opt. 33(21) 4607-4613 (1994)

Visibility of halos and rainbows

Stanley David Gedzelman
Appl. Opt. 19(18) 3068-3074 (1980)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.