OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 28 — Oct. 1, 2011
  • pp: F89–F101

CauStereo: Range from light in nature

Yohay Swirski, Yoav Y. Schechner, Ben Herzberg, and Shahriar Negahdaripour  »View Author Affiliations

Applied Optics, Vol. 50, Issue 28, pp. F89-F101 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1012 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Underwater, natural illumination typically varies strongly temporally and spatially. The reason is that waves on the water surface refract light into the water in a spatiotemporally varying manner. The resulting underwater illumination field forms a caustic network and is known as flicker. This work shows that caustics can be useful for stereoscopic vision, naturally leading to range mapping of the scene. Range triangulation by stereoscopic vision requires the determination of correspondence between image points in different viewpoints, which is often a difficult problem. We show that the spatiotemporal caustic pattern very effectively establishes stereo correspondences. Thus, we term the use of this effect as CauStereo. The temporal radiance variations due to flicker are unique to each object point, thus disambiguating the correspondence, with very simple calculations. Theoretical limitations of the method are analyzed using ray-tracing simulations. The method is demonstrated by underwater in situ experiments.

© 2011 Optical Society of America

OCIS Codes
(010.7340) Atmospheric and oceanic optics : Water
(330.1400) Vision, color, and visual optics : Vision - binocular and stereopsis
(010.7295) Atmospheric and oceanic optics : Visibility and imaging

Original Manuscript: May 23, 2011
Manuscript Accepted: July 19, 2011
Published: September 26, 2011

Virtual Issues
Vol. 6, Iss. 11 Virtual Journal for Biomedical Optics

Yohay Swirski, Yoav Y. Schechner, Ben Herzberg, and Shahriar Negahdaripour, "CauStereo: Range from light in nature," Appl. Opt. 50, F89-F101 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. E. Walker, Marine Light Field Statistics (John Wiley, 1994), Chap. 10.
  2. N. G. Jerlov, Marine Optics (Elsevier, 1976), Chap. 6.
  3. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley, 1983).
  4. A. Tonizzo, J. Zhou, A. Gilerson, M. S. Twardowski, D. J. Gray, R. A. Arnone, B. M. Gross, F. Moshary, and S. A. Ahmed, “Polarized light in coastal waters: hyperspectral and multiangular analysis,” Opt. Express 17, 5666–5683 (2009). [CrossRef] [PubMed]
  5. N. Gracias, S. Negahdaripour, L. Neumann, R. Prados, and R. Garcia, “A motion compensated filtering approach to remove sunlight flicker in shallow water images,” in Proc. MTS/IEEE Oceans (IEEE, 2008).
  6. D. K. Lynch and W. Livingston, Color and Light in Nature, 2nd ed. (Cambridge University, 2001), Chaps. 3,4.
  7. H. R. Gordon, “Normalized water-leaving radiance: revisiting the influence of surface roughness,” Appl. Opt. 44, 241–248(2005). [CrossRef] [PubMed]
  8. T. W. Cronin and N. J. Marshall, “Parallel processing and image analysis in the eyes of mantis shrimps,” Biol. Bull. 200, 177–183 (2001). [CrossRef] [PubMed]
  9. S. Johnsen, N. J. Marshall, and E. A. Widder, “Polarization sensitivity as a contrast enhancer in pelagic predators: lessons from in situ polarization imaging of transparent zooplankton,” Phil. Trans. R. Soc. B 366, 655–670 (2011). [CrossRef] [PubMed]
  10. D. C. Parkyn, J. D. Austin, and C. W. Hawryshyn, “Acquisition of polarized-light orientation in salmonids under laboratory conditions,” Anim. Behav. 65, 893–904 (2003). [CrossRef]
  11. G. Horvath and D. Varju, “On the structure of the aerial visual field of aquatic animals distorted by refraction,” Bull. Math. Biol. 53, 425–441 (1991).
  12. L. M. Mathger, N. Shashar, and R. T. Hanlon, “Do cephalopods communicate using polarized light reflections from their skin?” J. Exp. Biol. 212, 2133–2140 (2009). [CrossRef] [PubMed]
  13. A. Sarafraz, S. Negahdaripour, and Y. Y. Schechner, “Enhancing images in scattering media utilizing stereovision and polarization,” in Proceedings of the IEEE Workshop Applications of Computer Vision (IEEE, 2009).
  14. D. M. Kocak, F. R. Dalgleish, F. M. Caimi, and Y. Y. Schechner, “A focus on recent developments and trends in underwater imaging,” Mar. Technol. Soc. J. 42, 52–67 (2008). [CrossRef]
  15. M. Bryant, D. Wettergreen, S. Abdallah, and A. Zelinsky, “Robust camera calibration for an autonomous underwater vehicle,” in Proceedings of Australian Conference on Robotics and Automation (2000), pp. 111–116.
  16. J. M. Lavest, F. Guichard, and C. Rousseau, “Multiview reconstruction combining underwater and air sensors,” in Proceedings of the IEEE International Conference on Image Proccessing (IEEE, 2000), pp. 813–816.
  17. Y. Kahanov and J. Royal, “Analysis of hull remains of the Dor D vessel, Tantura Lagoon, Israel,” Int. J. Naut. Arch. 30, 257–265 (2001).
  18. Y. Y. Schechner and N. Karpel, “Recovery of underwater visibility and structure by polarization analysis,” IEEE J. Ocean. Eng. 30, 570–587 (2005). [CrossRef]
  19. T. Treibitz and Y. Y. Schechner, “Active polarization descattering,” IEEE Trans. Pattern Anal. Machine Intell. 31, 385–399(2009). [CrossRef]
  20. Y. Y. Schechner and N. Karpel, “Attenuating natural flicker patterns,” in Proceedings of MTS/IEEE Oceans (IEEE, 2004), pp. 813–816.
  21. Y. Swirski, Y. Y. Schechner, B. Herzberg, and S. Negahdaripour, “Stereo from flickering caustics,” in Proceedings of the IEEE International Conference on Computer Vision (IEEE, 2009), pp. 205–212. [CrossRef]
  22. Y. Swirski, Y. Y. Schechner, B. Herzberg, and S. Negahdaripour, “Underwater stereo using natural flickering illumination,” in Proceedings of MTS/IEEE Oceans (IEEE, 2010). [CrossRef]
  23. D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo correspondence algorithms,” Int. J. Comput. Vis. 47, 7–42 (2002). [CrossRef]
  24. A. Fournier and W. T. Reeves, “A simple model of ocean waves,” in Proceedings of Special Interest Group on Computer Graphics and Interactive Technology, pp. 75–84 (1986).
  25. M. N. Gamito and F. K. Musgrave, “An accurate model of wave refraction over shallow water,” Comput. Graphics 26, 291–307 (2002). [CrossRef]
  26. B. Jahne, J. Klinke, and S. Waas, “Imaging of short ocean wind waves: a critical theoretical review,” J. Opt. Soc. Am. 11, 2197–2209 (1994). [CrossRef]
  27. J. S. Jaffe, “Computer modelling and the design of optimal underwater imaging systems,” IEEE J. Ocean. Eng. 15, 101–111 (1990). [CrossRef]
  28. J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974). [CrossRef]
  29. H. Zhang and K. J. Voss, “Bidirectional reflectance study on dry, wet, and submerged particulate layers: effects of pore liquid refractive index and translucent particle concentrations,” Appl. Opt. 45, 8753–8763 (2006). [CrossRef] [PubMed]
  30. A. Fraser, R. Walker, and F. Jurgens, “Spatial and temporal correlation of underwater sunlight fluctuations in the sea,” IEEE J. Ocean. Eng. 5, 195–198 (1980). [CrossRef]
  31. R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision (Cambridge University, 2003), Chaps. 9–12.
  32. E. Trucco and A. Verri, Introductory Techniques For 3D Computer Vision (Prentice Hall, 1998), Chap. 6.
  33. R. Eustice, O. Pizarro, H. Singh, and J. Howland, “UWIT: underwater image toolbox for optical image processing and mosaicking in Matlab,” in Proceedings of International Symposium on Underwater Technology (IEEE, 2002), pp. 141–145. [CrossRef]
  34. A. Troccoli, S. B. Kang, and S. M. Seitz, “Multi-view multi-exposure stereo,” in Proceedings of 3D Data Processing, Visualization, and Transmission (2006), pp. 861–868.
  35. Y. Swirski, Y. Y. Schechner, and T. Nir, “Variational stereo in dynamic illumination,” to appear in Proceedings of the IEEE International Conference on Computer Vision (IEEE, 2011).
  36. T. Treibitz, Y. Y. Schechner, and H. Singh, “Flat refractive geometry,” in Proceedings of IEEE Computer Vision and Pattern Recognition (IEEE, 2008).
  37. J. Miranda, A. Camps, J. Gomez, M. Vall-llossera, and R. Villarino, “Time-dependent sea surface numerical generation for remote sensing applications,” in Proceedings of International Geographic and Remote Sensing Symposium (IEEE, 2005), pp. 2527–2530.
  38. S. Durden and J. Vesecky, “A physical radar cross-section model for a wind-driven sea with swell,” IEEE J. Ocean. Eng. 10, 445–451 (1985). [CrossRef]
  39. C. Cox and W. Munk, “Measurement of the roughness of the sea surface from photographs of the sun’s glitter,” J. Opt. Soc. Am. 44, 838–850 (1954). [CrossRef]
  40. J. A. Shaw and J. H. Churnside, “Scanning-laser glint measurements of sea-surface slope statistics,” Appl. Opt. 36, 4202–4213 (1997). [CrossRef] [PubMed]
  41. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994), Chaps. 3–5.
  42. S. Darula and R. Kittler, “CIE general sky standard defining luminance distributions,” in Proceedings of the International Building Performance Simulation Association (IEEE, 2002).
  43. R. W. Preisendorfer, Hydrologic Optics (U. S. Department of Commerce, 1976), Chaps. 1 and 12.
  44. D. E. Bowker, R. E. Davis, D. L. Myrick, K. Stacy and W. T. Jones, “Spectral reflectances of natural targets for use in remote sensing studies,” NASA Reference Publication A 1139 (1985), p. 141.
  45. K. Kamiuto, “Study of the Henyey-Greenstein approximation to scattering phase functions,” J. Quant. Spectrosc. Radiat. Transfer 37, 411–413 (1987). [CrossRef]
  46. J. Davis, D. Nehab, R. Ramamoorthi, and S. Rusinkiewicz, “Spacetime stereo: a unifying framework for septh from triangulation,” IEEE Trans. Pattern Anal. Machine Intell. 27, 296–302 (2005). [CrossRef]
  47. L. Zhang, B. Curless, and S. M. Seitz, “Spacetime stereo: shape recovery for dynamic scenes,” in Proceedings IEEE Computer Vision and Pattern Recognition (IEEE, 2003).
  48. T. W. Cronin, J. N. Nair, R. D. Doyle, and R. L. Caldwell, “Ocular tracking of rapidly moving visual targets by stomatopod crustaceans,” J. Exp. Biol. 138, 155–179(1988).
  49. W. N. McFarland and E. R. Loew, “Wave produced changes in underwater light and their relations to vision,” Envir. Biol. Fish 8, 173–184 (1983). [CrossRef]
  50. A. Fung and K. Lee, “A semi-empirical sea-spectrum model for scattering coefficient estimation,” IEEE J. Ocean. Eng. 7, 166–176 (1982). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited