OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 29 — Oct. 10, 2011
  • pp: 5647–5654

Double drive modes unimorph deformable mirror for low-cost adaptive optics

Jianqiang Ma, Ying Liu, Ting He, Baoqing Li, and Jiaru Chu  »View Author Affiliations


Applied Optics, Vol. 50, Issue 29, pp. 5647-5654 (2011)
http://dx.doi.org/10.1364/AO.50.005647


View Full Text Article

Enhanced HTML    Acrobat PDF (1179 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper reports the development and characterization of a low-cost thin unimorph deformable mirror (DM) driven by positive voltage. The developed DM consists of both an inner actuator array and an outer ring actuator, which works two drive modes: the inner actuator array is used for aberration correction, while the outer ring actuator is used to generate an overall defocus bias. An analytical model based on the theory of plates and shells is studied for predicting the behavior of the developed DM. Measurement results indicate that dual direction maximum defocus deformations of the developed DM are 14.3 and 14.9 μm , respectively, and the resonant frequency is 1.8 kHz . The root-mean-square deformation of the mirror surface after correction is better than λ / 20 for λ = 633 nm . The replication of Zernike mode shapes up to the fifth order demonstrates that this developed DM is satisfactory for low-order aberration correction.

© 2011 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(080.1010) Geometric optics : Aberrations (global)
(010.1285) Atmospheric and oceanic optics : Atmospheric correction
(230.4685) Optical devices : Optical microelectromechanical devices
(220.1080) Optical design and fabrication : Active or adaptive optics

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: May 12, 2011
Revised Manuscript: July 30, 2011
Manuscript Accepted: August 26, 2011
Published: October 4, 2011

Citation
Jianqiang Ma, Ying Liu, Ting He, Baoqing Li, and Jiaru Chu, "Double drive modes unimorph deformable mirror for low-cost adaptive optics," Appl. Opt. 50, 5647-5654 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-29-5647


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. A. Ealey and J. T. Trauger, “High-density deformable mirrors to enable coronographic planet detection,” Proc. SPIE 5166, 172–179 (2004). [CrossRef]
  2. N. Doble and D. R. Williams, “The application of MEMS technology for adaptive optics in vision science,” IEEE J. Sel. Top. Quantum Electron. 10, 629–635 (2004). [CrossRef]
  3. N. K. Metzger, W. Lubeigt, D. Burns, M. Griffith, L. Laycock, A. A. Lagatsky, C. T. A. Brown, and W. Sibbett, “Ultrashort-pulse laser with an intracavity phase shaping element,” Opt. Express 18, 8123–8134 (2010). [CrossRef] [PubMed]
  4. E. Dalimier and C. Dainty, “Comparative analysis of deformable mirrors for ocular adaptive optics,” Opt. Express 13, 4275–4285 (2005). [CrossRef] [PubMed]
  5. J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A 18, 1793–1803 (2001). [CrossRef]
  6. S. Verpoort and U. Wittrock, “Actuator patterns for unimorph and bimorph deformable mirrors,” Appl. Opt. 49, G37–G46(2010). [CrossRef]
  7. I. Kanno, T. Kunisawa, T. Suzuki, and H. Kotera, “Development of deformable mirror composed of piezoelectric thin films for adaptive optics,” IEEE J. Sel. Top. Quantum Electron. 13, 155–161 (2007). [CrossRef]
  8. G. Rodrigues, R. Bastaits, S. Roose, Y. Stockman, S. Gebhardt, and A. Schoenecker, “Modular bimorph mirrors for adaptive optics,” Opt. Eng. 48, 034001 (2009). [CrossRef]
  9. Y. Ning, W. H. Jiang, N. Ling, R. Changhui, and J. Wenhan, “Response function calculation and sensitivity comparison analysis of various bimorph deformable mirrors,” Opt. Express 15, 12030–12038 (2007). [CrossRef] [PubMed]
  10. S. Oya, A. Bouvier, O. Guyon, M. Watanabe, Y. Hayano, H. Takami, M. Iye, M. Hattori, Y. Saito, M. Itoh, S. Colley, M. Dinkins, M. Eldred, and T. Golota, “Performance of the deformable mirror for Subaru LGSAO,” Proc. SPIE 6272, 62724S (2006). [CrossRef]
  11. D. A. Horsley, H. Park, S. P. Laut, and J. S. Werner, “Characterization of a bimorph deformable mirror using stroboscopic phase-shifting interferometry,” Sens. Actuators A 134, 221–230 (2007). [CrossRef]
  12. J. C. Dainty, A. V. Koryabin, and A. V. Kudryashov, “Low-order adaptive deformable mirror,” Appl. Opt. 37, 4663–4668 (1998). [CrossRef]
  13. C. Boulet, M. Griffith, L. C. Laycock, and A. McCarthy, “Development of a small aperture bimorph deformable mirror for a free-space optical communications system,” Proc. SPIE 78330, 78330D (2010). [CrossRef]
  14. E. M. Ellis, “Low-cost bimorph mirrors in adaptive optics,” Ph.D. dissertation (Imperial College of Science, Technology and Medicine—University of London, 1999).
  15. W. G. Cady, Piezoelectricity (McGraw-Hill, 1946).
  16. X. H. Xu and J. R. Chu, “Preparation of a high-quality PZT thick film with performance comparable to those of bulk materials for applications in MEMS,” J. Micromech. Microeng. 18, 065001 (2008). [CrossRef]
  17. X. H. Xu, B. Q. Li, Y. Feng, and J. R. Chu, “Design, fabrication and characterization of a bulk-PZT-actuated MEMS deformable mirror,” J. Micromech. Microeng. 17, 2439–2446(2007). [CrossRef]
  18. M. Q. Bu, T. Melvin, G. Ensell, J. S. Wilkinson, and A. G. R. Evans, “Design and theoretical evaluation of a novel microfluidic device to be used for PCR,” J. Micromech. Microeng. 13, S125–S130 (2003). [CrossRef]
  19. T. Zhang and Q. M. Wang, “Performance evaluation of a valveless micropump driven by a ring-type piezoelectric actuator,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 463–473 (2006). [CrossRef] [PubMed]
  20. H. Park and D. Horsley, “Fabrication and characterization of MEMS deformable mirrors for adaptive optics,” in 2006 ASME International Mechanical Engineering Congress and Exposition, IMECE2006 (American Society of Mechanical Engineers, 2006), paper 13147.
  21. J. Q. Ma, B. Q. Li, and J. R. Chu, “Characterization of a 61 element bulk-PZT thick film deformable mirror and generation of Zernike polynomials,” Proc. SPIE 7657, 76570G (2010). [CrossRef]
  22. G. T. Kennedy and C. Paterson, “Correcting the ocular aberrations of a healthy adult population using microelectromechanical (MEMS) deformable mirrors,” Opt. Commun. 271, 278–284 (2007). [CrossRef]
  23. C. Friese and H. Zappe, “Deformable polymer adaptive optical mirrors,” J. Microelectromech. Syst. 17, 11–19 (2008). [CrossRef]
  24. L. J. Zhu, P. C. Sun, D. U. Bartsch, W. R. Freeman, and Y. Fainman, “Adaptive control of a micromachined continuous-membrane deformable mirror for aberration compensation,” Appl. Opt. 38, 168–176 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited