OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 29 — Oct. 10, 2011
  • pp: 5688–5694

Diagnostic study of four-wave-mixing-based electric-field measurements in high- pressure nitrogen plasmas

Walter R. Lempert, Sean P. Kearney, and Edward V. Barnat  »View Author Affiliations

Applied Optics, Vol. 50, Issue 29, pp. 5688-5694 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (671 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present the results of a diagnostic study of the use of coherent four wave mixing for in situ measurement of an electric field in air or in nitrogen-containing plasmas. Static electric fields in air at a nominal pressure of 625 Torr and temperature of 300 K are detected using vibrational CARS of nitrogen. It is shown that the ratio of the infrared signal to the vibrational N 2 CARS signal is equal to approximately 10 8 at 8.33 kV / cm , a factor of approximately 50 less than that predicted assuming equal third-order nonlinear susceptibilities. It is also shown that the spatial resolution of a typical collinear geometry measurement is approximately 1 cm . Finally, it is shown that achieving sensitivities of the order of 1 kV / cm requires that the coherent Raman pumping be performed in the highly saturated and Stark broadened regime.

© 2011 Optical Society of America

OCIS Codes
(190.1900) Nonlinear optics : Diagnostic applications of nonlinear optics
(300.6290) Spectroscopy : Spectroscopy, four-wave mixing
(190.4223) Nonlinear optics : Nonlinear wave mixing
(280.5395) Remote sensing and sensors : Plasma diagnostics

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: May 10, 2011
Manuscript Accepted: June 28, 2011
Published: October 6, 2011

Walter R. Lempert, Sean P. Kearney, and Edward V. Barnat, "Diagnostic study of four-wave-mixing-based electric-field measurements in high-pressure nitrogen plasmas," Appl. Opt. 50, 5688-5694 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B.M.Penetrante and S.E.Schultheis, eds., Non-Thermal Plasma Techniques for Pollution Control: Part A—Overview, Fundamentals and Supporting Technologies (Springer-Verlag, 1993). [CrossRef] [PubMed]
  2. B.M.Penetrante and S.E.Schultheis, eds., Non-Thermal Plasma Techniques for Pollution Control: Part B—Electron Beam and Electrical Discharge Processing (Springer-Verlag, 1993). [CrossRef] [PubMed]
  3. A. Yu. Starikovskii, “Plasma supported combustion,” Proc. Comb. Inst. 30, 2405–2417 (2005). [CrossRef]
  4. S. M. Starikovskaya, “Plasma assisted ignition and combustion,” J. Phys. D 39, R265–R299 (2006). [CrossRef]
  5. D. L. Carroll, J. T. Verdeyen, D. M. King, J. W. Zimmerman, J. K. Laystrom, B. S. Woodard, G. F. Benavides, K. Kittell, D. S. Stafford, M. J. Kushner, and W. C. Solomon, “Continuous-wave laser oscillation on the 1315 nm transition of atomic iodine pumped by O2(a1Δg) produced in an electric discharge,” Appl. Phys. Lett. 86, 111104 (2005). [CrossRef]
  6. A. Hicks, Yu. G. Utkin, W. R. Lempert, J. W. Rich, and I. V. Adamovich, “Continuous wave operation of a non-self-sustained electric discharge pumped oxygen-iodine laser,” Appl. Phys. Lett. 89, 241131 (2006). [CrossRef]
  7. E. Moreau, “Airflow control by non-thermal plasma actuators,” J. Phys. D 40, 605–636 (2007). [CrossRef]
  8. J.-H Kim, M. Nishihara, I. V. Adamovich, M. Samimy, S. Gorvatov, and F. Pliavaka, “Development of localized arc filament rf plasma actuators for high-speed and high Reynolds number flow control,” Exp. Fluids 49, 497–511 (2010). [CrossRef]
  9. E. V. Barnat and G. A. Hebner, “Electric fields in a sheath near a metal–dielectric interface,” Appl. Phys. Lett. 85, 3393–3395(2004). [CrossRef]
  10. T. Kampschulte, J. Schulze, D. Leggenhölscher, M. D. Bowden, and U. Czarnetski, “Laser spectroscopic electric field measurement in krypton,” New J. Phys. 9, 18–18 (2007). [CrossRef]
  11. Y. Zuzeek, I. Choi, M. Uddi, I. V. Adomovich, and W. R. Lempert, “Pure rotational CARS thermometry studies of low-temperature oxidation kinetics in air and ethene–air nanosecond pulse discharge plasmas,” J. Phys. D 43, 124001(2010). [CrossRef]
  12. T. Kishimoto, N. Wenzel, H. Grosse-Wilde, G. Lüpke, and G. Marowsky, “Experimental study of a CO2 Laser plasma by coherent anti-Stokes Raman scattering (CARS),” Spectrochem. Acta B 47, 51–60 (1992). [CrossRef]
  13. Y. Zuzeek, S. Bowman, I. Choi, I. V. Adamovich, and W. R. Lempert, “Pure rotational CARS studies of thermal energy release and ignition in nanosecond repetitively pulsed hydrogen-air plasmas,” Proc. Comb. Inst. 33, 3225–3232 (2011). [CrossRef]
  14. J. P. Bonnet, D. Grésillon, and J. P. Taran, “Nonintrusive measurements for high-speed, supersonic and hypersonic flows,” Ann. Rev. Fluid Mech. 30, 231–273 (1998). [CrossRef]
  15. A. Montello, M. Nishihara, J. W. Rich, I. V. Adamovich, and W. R. Lempert, “Picosecond CARS measurements of vibrational distribution function in a nonequilibrium Mach 5 flow,” AIAA-2011–1322, 49th AIAA Aerospace Sciences Meeting, Orlando, Fla., 4–7 January 2011.
  16. V. P. Gavrilenko, E. B. Kupriyanova, D. P. Okolokulak, V. N. Ochkin, S. Yu. Savinov, S. N. Tskhai, and A. N. Yarashev, “Generation of coherent IR light on a dipole-forbidden molecular transition with biharmonic pumping in a static electric field,” JETP Lett. 56, 1–5 (1992).
  17. O. A. Evsin, E. B. Kupryanova, V. N. Ochkin, S. Y. Savinov, and S. N. Tskhai, “Determination of the intensities of electric fields in gases and plasmas by the CARS method,” Quantum Electron. 25, 278–282 (1995). [CrossRef]
  18. D. A. Akimov, A. M. Zheltikov, N. I. Koroteev, A. N. Naumov, A. Y. Serdyuchenko, S. A. Sidorov-Biryukov, A. B. Fedotov, V. N. Ochkin, and S. N. Tskhai, “Coherent Raman scattering in molecular hydrogen in a dc electric field,” JETP Lett. 70, 375–379 (1999). [CrossRef]
  19. T. Ito, K. Kazunobu, U. Czarnetzki, and S. Hamaguchi, “Rapid formation of electric field profiles in repetitively pulsed high-voltage high-pressure nanosecond discharges,” J. Phys D 43, 062001 (2010). [CrossRef]
  20. T. Ito, K. Kobayashi, S. Mueller, D. Luggenhölscher, U. Czarnetzki, and S. Hamaguchi, “Electric field measurement in an atmospheric of higher pressure gas by coherent Raman scattering of nitrogen,” J. Phys. D 42, 092003(2009). [CrossRef]
  21. R. E. Palmer, “The CARSFT computer code for calculating coherent anti-Stokes Raman spectra: user and programmer information,” Sandia National Laboratories, Livermore, Calif., Report SAND 89–8206. Code provided by R.E.Palmer, Sandia National Laboratories—Combustion Research Facility (1989).
  22. L. A. Rahn and R. E. Palmer, “Studies of nitrogen self-broadening at high temperature with inverse Raman spectroscopy,” J. Opt. Soc. Am. B 3, 1164–1169 (1986). [CrossRef]
  23. G. J. Rosasco, W. Lempert, W. S. Hurst, and A. Fein, Chem. Phys. Lett. 97, 435–440 (1983). [CrossRef]
  24. M. A. Woodmansee, R. P. Lucht, and J. C. Dutton, “Stark broadening and stimulated Raman pumping in high-resolution N2 coherent anti-Stokes Raman scattering spectra,” AIAA J. 40, 1078–1086 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited