OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 29 — Oct. 10, 2011
  • pp: 5735–5749

Experimental investigations of the scanning functions of galvanometer-based scanners with applications in OCT

Virgil-Florin Duma, Kye-sung Lee, Panomsak Meemon, and Jannick P. Rolland  »View Author Affiliations


Applied Optics, Vol. 50, Issue 29, pp. 5735-5749 (2011)
http://dx.doi.org/10.1364/AO.50.005735


View Full Text Article

Enhanced HTML    Acrobat PDF (2173 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We analyze the three most common profiles of scanning functions for galvanometer-based scanners (GSs): the sawtooth, triangular and sinusoidal functions. They are determined experimentally with regard to the scan parameters of the input signal (i.e., frequency and amplitude). We study the differences of the output function of the GS measured as the positional error of the oscillatory mirror from the ideal function given by the input signal of the device. The limits in achieving the different types of scanning functions in terms of duty cycle and linearity are determined experimentally for the possible range of scan parameters. Of particular importance are the preservation of an imposed duty cycle and profile for the sawtooth function, the quantification of the linearity for the sinusoidal function, and the effective duty cycle for the triangular, as well as for the other functions. The range of scan amplitudes for which the stability of the oscillatory regime of the galvo mirror is stable for different frequencies is also highlighted. While the use of the device in certain scanning regimes is studied, certain rules of thumb are deduced to make the best out of the galvoscanner. Finally, the three types of scanning functions are tested with a Fourier domain optical coherence tomography (FD OCT) setup and the conclusions of the study are demonstrated in an imaging application by correlating the determined limits of the scanning regimes with the requirements of OCT.

© 2011 Optical Society of America

OCIS Codes
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(120.5800) Instrumentation, measurement, and metrology : Scanners
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(220.4880) Optical design and fabrication : Optomechanics
(230.4040) Optical devices : Mirrors

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: April 13, 2011
Revised Manuscript: July 5, 2011
Manuscript Accepted: July 7, 2011
Published: October 7, 2011

Virtual Issues
Vol. 6, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Virgil-Florin Duma, Kye-sung Lee, Panomsak Meemon, and Jannick P. Rolland, "Experimental investigations of the scanning functions of galvanometer-based scanners with applications in OCT," Appl. Opt. 50, 5735-5749 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-29-5735


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Montagu, “Scanners—galvanometric and resonant,” in Encyclopedia of Optical Engineering, R.G.Driggers, C.Hoffman, and R.Driggers, eds. (Taylor & Francis, 2003) pp. 2465–2487. [CrossRef]
  2. G. F. Marshall, Handbook of Optical and Laser Scanning (Marcel Dekker, 2004). [CrossRef]
  3. L. Beiser and B. Johnson, “Scanners,” in Handbook of Optics, M.Bass, ed. (McGraw-Hill, 1995).
  4. S. M. Coleman, “High capacity aerodynamic air bearing (HCAB) for laser scanning applications,” Proc. SPIE 5873, 56–64 (2005). [CrossRef]
  5. R. P. Aylward, “Advances and technologies of galvanometer-based optical scanners,” Proc. SPIE 3787, 158–164 (1999). [CrossRef]
  6. B. E. Rohr, “Testing high-performance galvanometer-based optical scanners,” Proc. SPIE 2383, 460–469 (1995). [CrossRef]
  7. A. Gh. Podoleanu, G. M. Dobre, and R. G. Cucu, “Sequential optical coherence tomography and confocal imaging,” Opt. Lett. 29, 364–366 (2004). [CrossRef] [PubMed]
  8. V. F. Duma, J. P. Rolland, and A. Gh. Podoleanu, “Perspectives of optical scanning in OCT,” Proc. SPIE 7556, 7556–10(2010).
  9. D. Miyazaki, K. Shiba, K. Sotsuka, and Kenji Matsushita, “Volumetric display system based on three dimensional scanning of inclined optical image,” Opt. Express 14, 12760–12769(2006). [CrossRef] [PubMed]
  10. M. W. Jenkins, O. Q. Chughtai, A. N. Basavanhally, M. Watanabe, and A. M. Rollins, “In vivo gated 4D imaging of the embryonic heart using optical coherence tomography,” J. Biomed. Opt. 12, 030505 (2007). [CrossRef] [PubMed]
  11. B. Baumann, M. Pircher, E. Götzinger, and Ch. K. Hitzenberger, “Full range complex spectral domain optical coherence tomography without additional phase shifters,” Opt. Express 15, 13375–13387 (2007). [CrossRef] [PubMed]
  12. C. C. Rosa, J. Rogers, and A. Gh. Podoleanu, “Fast scanning transmissive delay line for optical coherence tomography,” Opt. Lett. 30, 3263–3265 (2005). [CrossRef]
  13. A. Gh. Podoleanu and R. B. Rosen, “Combinations of techniques in imaging the retina with high resolution,” Progr. Retinal Eye Res. 27, 464–499 (2008). [CrossRef]
  14. I. Grulkowski, I. Gorczynska, M. Szkulmowski, D. Szlag, A. Szkulmowska, R. A. Leitgeb, A. Kowalczyk, and M. Wojtkowski, “Scanning protocols dedicated to smart velocity ranging in Spectral OCT,” Opt. Express 17, 23736–23754(2009). [CrossRef]
  15. J. Xie, S. Huang, Z. Duan, Y. Shi, and S. Wen, “Correction of the image distortion for laser galvanometric scanning systems,” Appl. Opt. 47, 4945–4951 (2008). [CrossRef] [PubMed]
  16. S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in Optical Coherence Tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express 18, 2782–2796 (2010). [CrossRef] [PubMed]
  17. L. Beiser, “Fundamental architecture of optical scanning systems,” Appl. Opt. 34, 7307–7317 (1995). [CrossRef] [PubMed]
  18. M. N. Sweeney, “Polygon scanners revisited,” Proc. SPIE 3131, 65–76 (1997). [CrossRef]
  19. W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, “115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser,” Opt. Lett. 30, 3159–3161 (2005). [CrossRef] [PubMed]
  20. K. H. Kim, C. Buehler, and P. T. C. So, “High-speed, two-photon scanning microscope,” Appl. Opt. 38, 6004–6009(1999). [CrossRef]
  21. V. F. Duma and M. Nicolov, “Neutral density filters with Risley prisms: analysis and design,” Appl. Opt. 48, 2678–2685 (2009). [CrossRef] [PubMed]
  22. W. C. Warger II and Ch. A. DiMarzio, “Dual-wedge scanning confocal reflectance microscope,” Opt. Lett. 32, 2140–2142(2007). [CrossRef] [PubMed]
  23. X. Tao, H. Cho, and F. Janabi-Sharifi, “Optical design of a variable view imaging system with the combination of a telecentric scanner and double wedge prisms,” Appl. Opt. 49, 239–246 (2010). [CrossRef] [PubMed]
  24. J. S. Gadhok, “Achieving high-duty cycle sawtooth scanning with galvanometric scanners,” Proc. SPIE 3787, 173–180(1999). [CrossRef]
  25. V. F. Duma, “Optimal scanning function of a galvanometer scanner for an increased duty cycle,” Opt. Eng. 49, 103001 (2010). [CrossRef]
  26. V. F. Duma, “Mathematical functions of a 2-D scanner with oscillating elements,” in Dynamic Systems Theory and Applications, J.Awrejcewicz, ed. (Springer, 2009), pp. 243–253.
  27. P. Meemon and J. P. Rolland, “Swept-source based, single-shot, multi-detectable velocity range Doppler optical coherence tomography,” Biomed. Opt. Express 1, 955–966 (2010). [CrossRef]
  28. K. Hsu, P. Meemon, K. S. Kee, P. J. Delfyett, and J. P. Rolland, “Broadband Fourier-domain mode-locked lasers,” Photonics Sensors Online First™, 4 November 2010 (2010). http://www.springerlink.com/content/31285878q356621v/fulltext.pdf.
  29. K. S. Lee, P. Meemon, W. Dallas, K. Hsu, and J. P. Rolland, “Dual detection full range frequency domain optical coherence tomography,” Opt. Lett. 35, 1058–1060 (2010). [CrossRef] [PubMed]
  30. K. S. Lee, A. C. Akcay, T. Delemos, E. Clarkson, and J. P. Rolland, “Dispersion control with a Fourier-domain optical delay line in a fiber-optic imaging interferometer,” Appl. Opt. 44, 4009–4022 (2005). [CrossRef] [PubMed]
  31. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-Megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18, 14685–14704 (2010). [CrossRef] [PubMed]
  32. D. Choi, H. Hiro-Oka, H. Furukawa, R. Yoshimura, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Fourier domain optical coherence tomography using optical demultiplexers imaging at 60,000,000 lines/s,” Opt. Lett. 33, 1318–1320(2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (2003 KB)     
» Media 2: MOV (1199 KB)     
» Media 3: MOV (2364 KB)     
» Media 4: MOV (2298 KB)     
» Media 5: MOV (2206 KB)     
» Media 6: MOV (3307 KB)     
» Media 7: MOV (2447 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited