OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 3 — Jan. 20, 2011
  • pp: 267–270

Analytical model for Rayleigh–Brillouin line shapes in air

B. Witschas  »View Author Affiliations

Applied Optics, Vol. 50, Issue 3, pp. 267-270 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (298 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Atmospheric lidar techniques for the measurement of wind, temperature, and optical properties of aerosols as well as nonintrusive measurement techniques for temperature, density, and bulk velocity in gas flows rely on the exact knowledge of the spectral line shape of the scattered laser light on molecules. A mathematically complex, numerical model (Tenti S6 model) is currently the best model for describing these spectra. In this paper an easy processable, alternative analytical model for describing spontaneous Rayleigh–Brillouin spectra in air at atmospheric conditions is introduced. The deviations between the analytical and Tenti S6 models are shown to be smaller than 0.85%.

© 2011 Optical Society of America

OCIS Codes
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(280.1310) Remote sensing and sensors : Atmospheric scattering
(280.2490) Remote sensing and sensors : Flow diagnostics
(280.3640) Remote sensing and sensors : Lidar

ToC Category:
Remote Sensing and Sensors

Original Manuscript: September 21, 2010
Revised Manuscript: November 12, 2010
Manuscript Accepted: November 26, 2010
Published: January 13, 2011

B. Witschas, "Analytical model for Rayleigh–Brillouin line shapes in air," Appl. Opt. 50, 267-270 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. O. Reitebuch, C. Lemmerz, E. Nagel, and U. Paffrath, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-aeolus. Part I: Instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26, 2501–2515 (2009). [CrossRef]
  2. B. Y. Liu, M. Esselborn, M. Wirth, A. Fix, D. B. Bi, and G. Ehret, “Influence of molecular scattering models on aerosol optical properties measured by high spectral resolution lidar,” Appl. Opt. 48, 5143–5153 (2009). [CrossRef] [PubMed]
  3. Z.-S. Liu, D.-C. Bi, X.-Q. Song, J.-B. Xia, R.-Z. Li, Z.-J. Wang, and C.-Y. She, “Iodine-filter-based high spectral resolution lidar for atmospheric temperature measurements,” Opt. Lett. 34, 2712–2714 (2009). [CrossRef] [PubMed]
  4. G. Elliott, N. Glumac, and C. Carter, “Molecular filtered Rayleigh scattering applied to combustion,” Meas. Sci. Technol. 12, 452–466 (2001). [CrossRef]
  5. R. Seasholtz, A. Buggele, and M. Reeder, “Flow measurements based on Rayleigh scattering and Fabry-Perot interferometer,” Opt. Lasers Eng. 27, 543–570 (1997). [CrossRef]
  6. A. Dabas, M. Denneulin, P. Flamant, C. Loth, A. Garnier, and A. Dolfi-Bouteyre, “Correcting winds measured with a Rayleigh Doppler lidar from pressure and temperature effects,” Tellus A 60, 206–215 (2008). [CrossRef]
  7. G. Tenti, C. Boley, and R. Desai, “On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).
  8. J. P. Boon and S. Yip, Molecular Hydrodynamics (McGraw-Hill, 1980), pp. 246–254.
  9. B. Witschas, M. O. Vieitez, E.-J. van Duijn, O. Reitebuch, W. van de Water, and W. Ubachs, “Spontaneous Rayleigh–Brillouin scattering of ultraviolet light in nitrogen, dry air, and moist air,” Appl. Opt. 49, 4217–4227 (2010). [CrossRef] [PubMed]
  10. M. O. Vieitez, E. J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. S. de Wijn, N. J. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82, 0438361–14 (2010). [CrossRef]
  11. C. D. Boley, R. C. Desai, and G. Tenti, “Kinetic models and Brillouin scattering in a molecular gas,” Can. J. Phys. 50, 2158 (1972). [CrossRef]
  12. J. Gustavsson, “Molecular velocity distribution in air,” http://plaza.ufl.edu/jgu/public_html/UF/AirMolVelDistr.pdf.
  13. Q. Zheng, “On the Rayleigh-Brillouin scattering in air,” Ph.D. dissertation (University of New Hampshire, 2004).
  14. H. Shimizu, K. Noguchi, and C. Y. She, “Atmospheric temperature measurement by a high spectral resolution lidar,” Appl. Opt. 25, 1460–1466 (1986). [CrossRef] [PubMed]
  15. T.D.Rossing, ed., Springer Handbook of Acoustics(Springer, 2007), p. 31.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited