OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 3 — Jan. 20, 2011
  • pp: 303–306

Demonstration of a Fresnel axicon

Kevin Gourley, Ilya Golub, and Brahim Chebbi  »View Author Affiliations


Applied Optics, Vol. 50, Issue 3, pp. 303-306 (2011)
http://dx.doi.org/10.1364/AO.50.000303


View Full Text Article

Enhanced HTML    Acrobat PDF (686 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We design and manufacture a Fresnel axicon (fraxicon) that generates a quasi-diffraction-free/Bessel beam with a large depth of field. The novel optical element is characterized with both coherent and incoherent light, and its behavior is compared with that of a classical axicon. While the fraxicon exhibits a strong interference pattern in the on-axis intensity distribution, it can be smoothed out when using broadband light, partial spatial coherence light, or by period randomization. As inexpensive, compact/lightweight, and low-absorption elements, fraxicons may find applications in imaging, illumination, and situations where low absorption and dispersion are important.

© 2011 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(220.0220) Optical design and fabrication : Optical design and fabrication
(230.0230) Optical devices : Optical devices
(070.3185) Fourier optics and signal processing : Invariant optical fields

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: September 23, 2010
Revised Manuscript: November 28, 2010
Manuscript Accepted: November 29, 2010
Published: January 14, 2011

Citation
Kevin Gourley, Ilya Golub, and Brahim Chebbi, "Demonstration of a Fresnel axicon," Appl. Opt. 50, 303-306 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-3-303


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. H. McLeod, “The axicon: a new type of optical element,” J. Opt. Soc. Am. 44, 592–597 (1954). [CrossRef]
  2. Z. Jaroszewicz, Axicons: Design and Propagation Properties, Research and Development Treatises (SPIE Polish Chapter, 1997), Vol. 5.
  3. J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1451 (1987). [CrossRef] [PubMed]
  4. For a recent review on axicons and their applications, see Z. Jaroszewicz, A. Burvall, and T. Friberg, “Axicon—the most important optical element,” Opt. Photon. News 16(4), 34–39 (2005). [CrossRef]
  5. J. Sochacki, A. Kolodziejczyk, Z. Jaroszewicz, and S. Bara, “Nonparaxial design of generalized axicons,” Appl. Opt. 31, 5326–5330 (1992). [CrossRef] [PubMed]
  6. I. Golub and T. Mirtchev, “Absorption-free beam generated by a phase-engineered optical element,” Opt. Lett. 34, 1528–1530 (2009). [CrossRef] [PubMed]
  7. I. Golub, “Solid immersion axicon: maximizing nondiffracting or Bessel beam resolution,” Opt. Lett. 32, 2161–2163 (2007). [CrossRef] [PubMed]
  8. I. Golub, “Fresnel axicon,” Opt. Lett. 31, 1890–1892 (2006). [CrossRef] [PubMed]
  9. K. Gourley, I. Golub, and B. Chebbi, “First experimental demonstration of a Fresnel axicon,” Proc. SPIE 7099, 70990D(2009). [CrossRef]
  10. J. Lin, J. Tan, J. Liu, and S. Liu, “Rigorous electromagnetic analysis of two dimensional micro-axicon by boundary integral equation,” Opt. Express 17, 1466–1471 (2009). [CrossRef] [PubMed]
  11. D. A. Gregory and G. Peng, “Random facet Fresnel lenses and mirrors,” Opt. Eng. 40, 713–719 (2001). [CrossRef]
  12. S. Y. Popov and A. T. Friberg, “Design of diffractive axicons for partially coherent light,” Opt. Lett. 23, 1639–1641 (1998). [CrossRef]
  13. Z. Jaroszewicz, J. F. Roman Dopazo, and C. Gomez-Reino, “Uniformization of the axial intensity of diffraction axicons by polychromatic illumination,” Appl. Opt. 35, 1025–1031(1996). [CrossRef] [PubMed]
  14. I. Golub, B. Chebbi, D. Shaw, and D. Nowacki, “Characterization of a refractive logarithmic axicon,” Opt. Lett. 35, 2828–2830 (2010). [CrossRef] [PubMed]
  15. Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett. 27, 243–235 (2002). [CrossRef]
  16. G. Druart, J. Taboury, N. Guerineau, R. Haidar, A. Kattnig, and J. Primot, “Demonstration of image-zooming capability for diffractive axicons,” Opt. Lett. 33, 366–368(2008). [CrossRef] [PubMed]
  17. J. A. García, S. Bará, M. G. García, Z. Jaroszewicz, A. Kolodziejczyk, and K. Petelczyc, “Imaging with extended focal depth by means of the refractive light sword optical element,” Opt. Express 16, 18371–18378 (2008). [CrossRef]
  18. M. Rioux, R. Tremblay, and P.-A. Belanger, “Linear, annular, and radial focusing with axicons and applications to laser machining,” Appl. Opt. 17, 1532–1536 (1978). [CrossRef] [PubMed]
  19. H. Sõnajalg, M. Rätsep, and P. Saari, “Demonstration of the Bessel-X pulse propagating with strong lateral and longitudinal localization in a dispersive medium,” Opt. Lett. 22, 310–312 (1997). [CrossRef] [PubMed]
  20. B. Chebbi, S. Minko, N. Al-Akwaa, and I. Golub, “Remote control of extended depth of field focusing,” Opt. Commun. 283, 1678–1683 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited