OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 3 — Jan. 20, 2011
  • pp: 366–372

Evaluation of spectrometric parameters in spectral-domain optical coherence tomography

Peng Xi, Kai Mei, Tobias Bräuler, Chuanqing Zhou, and Qiushi Ren  »View Author Affiliations

Applied Optics, Vol. 50, Issue 3, pp. 366-372 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (876 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The parameters of the spectrometer were analyzed in order to optimize the performance of spectral- domain optical coherence tomography (SD-OCT). Because probing depth is proportional to spectral resolution, it can be increased with the choice of a higher resolution spectrometer, which implies greater pixel numbers and lower imaging speed, or by sacrificing part of the spectrum, which compromises the axial resolution and side lobes. With a dynamic range of 8   bits or more, the signal-to-noise ratio remains constant for different noise levels. The results were verified experimentally with in vivo retinal SD-OCT imaging.

© 2011 Optical Society of America

OCIS Codes
(070.4790) Fourier optics and signal processing : Spectrum analysis
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: August 30, 2010
Revised Manuscript: December 6, 2010
Manuscript Accepted: December 7, 2010
Published: January 17, 2011

Virtual Issues
Vol. 6, Iss. 2 Virtual Journal for Biomedical Optics

Peng Xi, Kai Mei, Tobias Bräuler, Chuanqing Zhou, and Qiushi Ren, "Evaluation of spectrometric parameters in spectral-domain optical coherence tomography," Appl. Opt. 50, 366-372 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef] [PubMed]
  2. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003). [CrossRef] [PubMed]
  3. M. I. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical coherence tomography,” Am. J. Ophthalmol. 138, 412–419 (2004). [CrossRef] [PubMed]
  4. M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmol. Annu. 112, 1734–1746 (2005). [CrossRef]
  5. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003). [CrossRef]
  6. B. Cense, N. Nassif, T. Chen, M. Pierce, S. H. Yun, B. Park, B. Bouma, G. Tearney, and J. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12, 2435–2447 (2004). [CrossRef] [PubMed]
  7. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002). [CrossRef] [PubMed]
  8. S.-W. Lee, H.-W. Jeong, B.-M. Kin, Y.-C. Ahn, W. Jung, and Z. Chen, “Optimization for axial resolution, depth range, and sensitivity of spectral domain optical coherence tomography at 1.3 μm,” J. Korean Phys. Soc. 55, 2354–2360 (2009). [CrossRef]
  9. B. Goldberg, B. Vakoc, W. Oh, M. Suter, S. Waxman, M. Freilich, B. Bouma, and G. Tearney, “Performance of reduced bit-depth acquisition for optical frequency domain imaging,” Opt. Express 17, 16957–16968 (2009). [CrossRef] [PubMed]
  10. W. Wieser, B. Biedermann, T. Klein, C. Eigenwillig, and R. Huber, “Multi-megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18, 14685–14704 (2010). [CrossRef] [PubMed]
  11. A. Tumlinson, B. Hofer, A. Winkler, B. Považay, W. Drexler, and J. Barton, “Inherent homogenous media dispersion compensation in frequency domain optical coherence tomography by accurate k-sampling,” Appl. Opt. 47, 687–693(2008). [CrossRef] [PubMed]
  12. G. Häusler and M. W. Lindner, ““Coherence radar” and “spectral radar”:—new tools for dermatological diagnosis,” J Biomed. Opt. 3, 21–31 (1998). [CrossRef]
  13. J. Zhang, J. Nelson, and Z. Chen, “Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator,” Opt. Lett. 30, 147–149 (2005). [CrossRef] [PubMed]
  14. R. Tripathi, N. Nassif, J. Nelson, B. Park, and J. de Boer, “Spectral shaping for non-Gaussian source spectra in optical coherence tomography,” Opt. Lett. 27, 406–408(2002). [CrossRef]
  15. C. Zhou, J. Wang, and S. Jiao, “Dual channel dual focus optical coherence tomography for imaging accommodation of the eye,” Opt. Express 17, 8947–8955 (2009). [CrossRef] [PubMed]
  16. N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12, 367–376 (2004). [CrossRef] [PubMed]
  17. N. Nassif, B. Cense, B. H. Park, S. Yun, T. Chen, B. Bouma, G. Tearney, and J. Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett. 29, 480–482 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited