OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 30 — Oct. 20, 2011
  • pp: 5759–5769

Near-critical-angle scattering for the characterization of clouds of bubbles: particular effects

Fabrice R.A. Onofri, Mariusz A. Krzysiek, Séverine Barbosa, Valérie Messager, Kuan-Fang Ren, and Janusz Mroczka  »View Author Affiliations

Applied Optics, Vol. 50, Issue 30, pp. 5759-5769 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2127 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report experimental investigations on the influence of various optical effects on the far-field scattering pattern produced by a cloud of optical bubbles near the critical scattering angle. Among the effects considered, there is the change of the relative refractive index of the bubbles (gas bubbles or some liquid–liquid droplets), the influence of intensity gradients induced by the laser beam intensity profile and by the spatial filtering of the collection optics, the coherent and multiple scattering effects occurring for densely packed bubbles, and the tilt angle of spheroidal optical bubbles. The results obtained herein are thought to be fundamental for the development of future works to model these effects and for the extension of the range of applicability of an inverse technique (referenced herein as the critical angle refractometry and sizing technique), which is used to determine the size distribution and composition of bubbly flows.

© 2011 Optical Society of America

OCIS Codes
(260.1960) Physical optics : Diffraction theory
(280.2490) Remote sensing and sensors : Flow diagnostics
(290.3030) Scattering : Index measurements
(290.3200) Scattering : Inverse scattering
(290.5850) Scattering : Scattering, particles

ToC Category:

Original Manuscript: May 11, 2011
Revised Manuscript: July 16, 2011
Manuscript Accepted: July 25, 2011
Published: October 11, 2011

Fabrice R.A. Onofri, Mariusz A. Krzysiek, Séverine Barbosa, Valérie Messager, Kuan-Fang Ren, and Janusz Mroczka, "Near-critical-angle scattering for the characterization of clouds of bubbles: particular effects," Appl. Opt. 50, 5759-5769 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Onofri, M. Krzysiek, and J. Mroczka, “Critical angle refractometry and sizing for bubbly flow characterization,” Opt. Lett. 32, 2070–2072 (2007). [CrossRef] [PubMed]
  2. F. R. A. Onofri, M. Krzysiek, J. Mroczka, K.-F. Ren, S. Radev, and J.-P. Bonnet, “Optical characterization of bubbly flows with a near-critical-angle scattering technique,” Exp. Fluids 47, 721–732 (2009). [CrossRef]
  3. M. Krzysiek, “Particle systems characterization by inversion of critical light scattering patterns,” Ph.D. dissertation (University of Provence, 2009).
  4. R. Xu, Particle Characterization: Light Scattering Methods (Kluwer, 2001).
  5. F. R. A. Onofri, M. Wozniak, and S. Barbosa, “On the optical characterisation of nanoparticles and their aggregates in plasma systems,” Contrib. Plasma Phys. 51, 228–236(2011). [CrossRef]
  6. P. H. Kaye, “Spatial light scattering as a means of characterising and classifying non-spherical particles,” Meas. Sci. Technol. 9, 141–149 (1998). [CrossRef]
  7. H. M. Nussenzweig, Diffraction Effects in Semiclassical Scattering (Cambridge University, 1992). [CrossRef]
  8. J. P. A. J. van Beeck, D. Giannoulis, L. Zimmer, and M. L. Riethmuller, “Global rainbow thermometry for droplet-temperature measurement,” Opt. Lett. 24, 1696–1698 (1999). [CrossRef]
  9. M. R. Vetrano, J. P. A. J. van Beeck, and M. L. Riethmuller, “Global rainbow thermometry: improvements in the data inversion algorithm and validation technique in liquid–liquid suspension,” Appl. Opt. 43, 3600–3607 (2004). [CrossRef] [PubMed]
  10. N. Fiedler-Ferrari, H. M. Nussenzweig, and W. J. Wiscombe, “Theory of near-critical-angle scattering from a curved interface,” Phys. Rev. A 43, 1005–1038 (1991). [CrossRef] [PubMed]
  11. C. F. Bohren, D. R. Huffman, and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1988).
  12. G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443(1988). [CrossRef]
  13. F. Onofri, G. Gréhan, and G. Gouesbet, “Electromagnetic scattering from a multilayered sphere located in an arbitrary beam,” Appl. Opt. 34, 7113–7124 (1995). [CrossRef] [PubMed]
  14. S. C. Barber, and P. W. Hill, Light Scattering by Particles: Computational Methods (World Scientific, 1990). [CrossRef]
  15. D. L. Kingsbury and P. L. Marston, “Mie scattering near the critical angle of bubbles in water,” J. Opt. Soc. Am. A 71, 358–361 (1981). [CrossRef]
  16. P. L. Marston, “Critical scattering angle by a bubble: physical optics approximation and observations,” J. Opt. Soc. Am. A 69, 1205–1211 (1979). [CrossRef]
  17. P. L. Marston and D. L. Kingsbury, “Scattering by a bubble in water near the critical angle: interference effects,” J. Opt. Soc. Am. A 71, 358–361 (1981). [CrossRef]
  18. D. S. Langley and P. L. Marston, “Critical scattering of laser light from bubbles in water: measurements, models, and application to sizing bubbles,” Appl. Opt. 23, 1044–1054(1984). [CrossRef] [PubMed]
  19. G. E. Davis, “Scattering of light by an air bubble in water,” J. Opt. Soc. Am. A 45, 572–581 (1955). [CrossRef]
  20. J. A. Lock, “Ray scattering by an arbitrarily oriented spheroid: II. Transmission and cross-polarization effects,” Appl. Opt. 35, 515–531 (1996). [CrossRef] [PubMed]
  21. K.-F. Ren, F. R. A. Onofri, C. Rozé, and T. Girasole, “Vectorial complex ray model and application to two-dimensional scattering of plane wave by a spheroidal particle,” Opt. Lett. 36, 370–372 (2011). [CrossRef] [PubMed]
  22. H. K. V. Lötsch, “Beam displacement at total reflection: the Goos-Hänchen effect,” Optik 32, 553–569 (1971).
  23. J. A. Lock, “Role of the tunneling ray in near-critical-angle scattering by a dielectric sphere,” J. Opt. Soc. Am. A 20, 499–507 (2003). [CrossRef]
  24. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1957).
  25. C. E. Dean and P. L. Marston, “Critical angle light scattering from bubbles: an asymptotic series approximation,” Appl. Opt. 30, 4764–4776 (1991). [CrossRef] [PubMed]
  26. F. Onofri, “Critical angle refractometry: for simultaneous measurement of particles in flow size and relative refractive index,” Part. Part. Syst. Charact. 16, 119–127 (1999). [CrossRef]
  27. C. L. Lawson and R. J. Hanson, Solving Least Squares Problems (Prentice Hall, 1974).
  28. P. C. Hansen, “Regularization tools, a Matlab package for analysis and solution of discrete ill-posed problems,” Numer. Algorithms 6, 1–35 (1994). [CrossRef]
  29. S. Twomey, Introduction to the Mathematics in Remote Sensing and Indirect Measurement (Elsevier, 1979).
  30. F. Onofri, A. Lenoble, B. Bultynck, and P. H. Guéring, “High-resolution laser diffractometry for the online sizing of small transparent fibres,” Opt. Commun. 234, 183–191 (2004). [CrossRef]
  31. T. Kawaguchi, Y. Akasaka, and M. Maeda, “Size measurements of droplets and bubbles by advanced interferometric laser imaging technique,” Meas. Sci. Technol. 13, 308–316(2002). [CrossRef]
  32. G. Gréhan, F. Onofri, T. Girasole, and G. Gouesbet, “Measurement of bubbles by phase Doppler technique and trajectory ambiguity,” in Developments in Laser Techniques and Applications to Fluid Mechanics, R. J.Adrian, D.F. G.Durao, F.Durst, M.V.Heitor, M.Maeda, and J.Whitelaw, eds. (Springer, 1994), pp. 290–302.
  33. L. Tian, N. Loomis, J. A. Domínguez-Caballero, and G. Barbastathis, “Quantitative measurement of size and three-dimensional position of fast-moving bubbles in air-water mixture flows using digital holography,” Appl. Opt. 49, 1549–1554 (2010). [CrossRef] [PubMed]
  34. W. P. Arnott and P. L. Marston, “Unfolded optical glory of spheroids: backscattering of laser light from freely rising spheroidal air bubbles in water,” Appl. Opt. 30, 3429–3442 (1991). [CrossRef] [PubMed]
  35. J. R. Grace, T. Wairegi, and Т. Н. Nguyen, “Shapes and velocities of single drops and bubbles moving freely through immiscible liquids,” Trans. Inst. Chem. Eng. 54, 167–173(1976).
  36. G. P. Celata, F. D’Annibalea, P. Di Marcob, G. Memolib, and A. Tomiyama, “Measurements of rising velocity of a small bubble in a stagnant fluid in one- and two-component systems,” Exp. Therm. Fluid Sci. 31, 609–623 (2007). [CrossRef]
  37. C. Pilz and G. Brenn, “On the critical bubble volume at the rise velocity jump discontinuity in viscoelastic liquids,” J. Non-Newton. Fluid Mech. 145, 124–138 (2007). [CrossRef]
  38. A. Aresu, A. Martelluccia, and A. Paraboni, “Experimental assessment of rain anisotropy and canting angle in a horizontal path at 30 GHz,” IEEE Trans. Antennas Propag. Mag. 41, 1331–1335 (1993). [CrossRef]
  39. W. P. Arnott and P. L. Marston, “Optical glory of small freely-rising gas bubbles in water: observed and computed cross-polarized backscattering patterns,” J. Opt. Soc. Am. A 5, 496–506 (1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited