OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 30 — Oct. 20, 2011
  • pp: 5770–5779

Comparison of chlorophyll a concentration detected by remote sensors and other chlorophyll indices in inhomogeneous turbid waters

Leonid G. Sokoletsky and Yosef Z. Yacobi  »View Author Affiliations


Applied Optics, Vol. 50, Issue 30, pp. 5770-5779 (2011)
http://dx.doi.org/10.1364/AO.50.005770


View Full Text Article

Enhanced HTML    Acrobat PDF (1064 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new analytical approach for retrieval of the vertically weighted chlorophyll a concentration ( Chl rs ) detected by remote sensors is presented. Model calculations were carried out for the turbid waters of Lake Kinneret, Israel, and showed that Chl rs may be replaced by the average chlorophyll a concentration ( Chl p ) within the upper “penetration layer” 0 Z p . The study also showed a high correlation between Chl rs and Chl concentration averaged in the other depth layers, namely, the 0 1 m layer, the euphotic layer ( 0 Z e ), and the production layer ( 0 Z pr ). Our findings are closely related to models developed for the world ocean, with the exception of periods when the dinoflagellate Peridinium gatunense blooms in the lake. We showed the effect of the pattern of vertical Chl distributions within the penetration layer on the difference between Chl rs and other Chl indices was conspicuous when the Chl maximum was in the uppermost 0 5 m layer of the water column. We assume that the presented approaches are instrumental for further development of optimal, locally adapted algorithms for remote sensing of Chl in any type of natural waters.

© 2011 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(330.7326) Vision, color, and visual optics : Visual optics, modeling
(010.5620) Atmospheric and oceanic optics : Radiative transfer

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: May 16, 2011
Manuscript Accepted: August 19, 2011
Published: October 11, 2011

Virtual Issues
Vol. 6, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Leonid G. Sokoletsky and Yosef Z. Yacobi, "Comparison of chlorophyll a concentration detected by remote sensors and other chlorophyll indices in inhomogeneous turbid waters," Appl. Opt. 50, 5770-5779 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-30-5770


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. R. Gordon and W. R. McCluney, “Estimation of the depth of sunlight penetration in the sea for remote sensing,” Appl. Opt. 14, 413–416 (1975). [CrossRef] [PubMed]
  2. A. Morel and J. F. Berthon, “Surface pigments, algal biomass profiles, and potential production of the euphotic layer: relationships reinvestigated in view of remote-sensing applications,” Limnol. Oceanogr. 34, 1545–1562 (1989). [CrossRef]
  3. D. A. Antoine and A. Morel, “Oceanic primary production. 1. Adaptation of a spectral light-photosynthesis model in view of application to satellite chlorophyll observations,” Global Biogeochem. Cycles 10, 43–55 (1996). [CrossRef]
  4. H. R. Gordon and D. C. Clarke, “Remote sensing of optical properties of a stratified ocean: an improved interpretation,” Appl. Opt. 19, 3428–3430 (1980). [CrossRef] [PubMed]
  5. J.-M. André, “Ocean color remote-sensing and the subsurface vertical structure of phytoplankton pigments,” Deep-Sea Res. Part A 39, 763–779 (1992). [CrossRef]
  6. K. S. Prasad, S. E. Lohrenz, D. G. Redalje, and G. L. Fahnenstiel, “Primary production in the Gulf of Mexico coastal waters using ‘remotely-sensed’ trophic category approach,” Cont. Shelf Res. 15, 1355–1368 (1995). [CrossRef]
  7. Y. Z. Yacobi, A. Gitelson, and M. Mayo, “Remote sensing of chlorophyll in Lake Kinneret using high spectral resolution radiometer and Landsat Thematic Mapper: spectral features of reflectance and algorithm development,” J. Plankton Res. 17, 2155–2173 (1995). [CrossRef]
  8. W. J. Rhea and C. O. Davis, “A comparison of the SeaWiFS chlorophyll and CZCS pigment algorithms using optical data from the 1992 JGOFS Equatorial Pacific Time Series,” Deep-Sea Res. Part II 44, 1907–1925 (1997). [CrossRef]
  9. K. R. Arrigo, D. H. Robinson, D. L. Worthen, B. Schieber, and M. P. Lizotte, “Bio-optical properties of the southwestern Ross Sea,” J. Geophys. Res. 103, 21683–21695 (1998). [CrossRef]
  10. N. Hoepffner, B. Sturm, Z. Finenko, and D. Larkin, “Depth-integrated primary production in the eastern tropical and subtropical North Atlantic basin from ocean colour imagery,” Int. J. Remote Sens. 20, 1435–1456 (1999). [CrossRef]
  11. L. Sokoletsky, Z. Dubinsky, M. Shoshany, and N. Stambler, “Estimation of phytoplankton pigment concentration in the Gulf of Aqaba (Eilat) by in situ and remote sensing single-wavelength algorithms,” Int. J. Remote Sens. 24, 5049–5073(2003). [CrossRef]
  12. L. G. Sokoletsky, A. Oren, N. Stambler, and D. Iluz, “Practical algorithms for remote-sensing retrieval of the water column constituents in the Israeli waters,” in Proceedings of the V International Conference “Current Problems in Optics of Natural Waters, ONW-2009,” I.Levin and G.Gilbert, eds. (Rozhdestvensky Optical Society, 2009), pp. 287–292.
  13. D. Ballestero, “Remote sensing of vertically structured phytoplankton pigments,” Top. Meteor. Oceanogr. 6, 14–23 (1999).
  14. J. J. Cullen, “The deep chlorophyll maximum: comparing vertical profiles of chlorophyll a,” Can. J. Fish. Aquat. Sci. 39, 791–803 (1982). [CrossRef]
  15. M. R. Lewis, J. J. Cullen, and T. Platt, “Phytoplankton and thermal structure in the upper ocean: consequences of nonuniformity in chlorophyll profile,” J. Geophys. Res. 88, 2565–2570 (1983). [CrossRef]
  16. T. Platt, S. Sathyendranath, C. M. Caverhill, and M. R. Lewis, “Ocean primary production and available light: further algorithms for remote sensing,” Deep-Sea Res. Part A 35, 855–879 (1988). [CrossRef]
  17. T. Platt and S. Sathyendranath, “Ocean primary production: estimation by remote sensing at local and regional scales,” Science 241, 1613–1620 (1988). [CrossRef] [PubMed]
  18. R. G. Wetzel, Limnology: Lake and River Ecosystems, 3rd ed. (Academic, 2001).
  19. R. C. Smith, “Remote sensing and depth distribution of ocean chlorophyll,” Mar. Ecol. Prog. Ser. 5, 359–361 (1981). [CrossRef]
  20. H. R. Gordon, D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans, and W. W. Broenkow, “Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison of ship determinations and CZCS estimates,” Appl. Opt. 22, 20–36(1983). [CrossRef] [PubMed]
  21. H. R. Gordon, “Diffuse reflectance of the ocean: influence of nonuniform phytoplankton pigment profile,” Appl. Opt. 31, 2116–2129 (1992). [CrossRef] [PubMed]
  22. R. A. Arnone, R. W. Gould, Jr., R. A. Oriol, and G. E. Terrie, “Effects of vertical chlorophyll structure and solar irradiance on remote sensing ocean color spectrum,” Proc. SPIE 2258, 322–331 (1994). [CrossRef]
  23. K. J. Voss and A. Morel, “Bidirectional reflectance function for oceanic waters with varying chlorophyll concentrations: measurements versus predictions,” Limnol. Oceanogr. 50, 698–705 (2005). [CrossRef]
  24. D. A. Siegel and T. D. Dickey, “On the parameterization of irradiance for open ocean photoprocesses,” J. Geophys. Res. 92, 14648–14662 (1987). [CrossRef]
  25. H. Arst, S. Mäekivi, T. Lukk, and A. Herlevi, “Calculating irradiance penetration into water bodies from the measured beam attenuation coefficient,” Limnol. Oceanogr. 42, 379–385(1997). [CrossRef]
  26. S. Sathyendranath and T. Platt, “Analytic model of ocean color,” Appl. Opt. 36, 2620–2629 (1997). [CrossRef] [PubMed]
  27. J. R. V. Zaneveld, “Remotely sensed reflectance and its dependence on vertical structure: a theoretical derivation,” Appl. Opt. 21, 4146–4150 (1982). [CrossRef] [PubMed]
  28. W. D. Philpot, “Radiative transfer in stratified waters: a single-scattering approximation for irradiance,” Appl. Opt. 26, 4123–4132 (1987). [CrossRef] [PubMed]
  29. R. W. Gould, Jr., and R. A. Arnone, “Three-dimensional modeling of inherent optical properties in a coastal environment: coupling ocean color imagery and in situ measurements,” Int. J. Remote Sens. 19, 2141–2159 (1998). [CrossRef]
  30. J. R. V. Zaneveld, A. H. Barnard, and E. Boss, “Theoretical derivation of the depth average of the remotely sensed optical parameters,” Opt. Express 13, 9052–9061 (2005). [CrossRef] [PubMed]
  31. J. Piscozub, T. Neumann, and L. Woźniak, “Ocean color remote sensing: choosing the correct depth weighting function,” Opt. Express 16, 14683–14688 (2008). [CrossRef]
  32. J. T. O. Kirk, “The upwelling light stream in natural waters,” Limnol. Oceanogr. 34, 1410–1425 (1989). [CrossRef]
  33. S. Maritorena, A. Morel, and A. Gentili, “Diffuse reflectance of oceanic shallow waters: influence of water depth and bottom albedo,” Limnol. Oceanogr. 39, 1689–1703 (1994). [CrossRef]
  34. M. Stramska and D. Stramski, “Effects of nonuniform vertical profile of chlorophyll concentration on remote-sensing reflectance of the ocean,” Appl. Opt. 44, 1735–1747(2005). [CrossRef] [PubMed]
  35. P. Xiu, Y. Liu, and J. Tang, “Variations of ocean colour parameters with nonuniform vertical profiles of chlorophyll concentration,” Int. J. Remote Sens. 29, 831–849 (2008). [CrossRef]
  36. Y. Z. Yacobi, “Temporal and vertical variation of chlorophyll a concentration, phytoplankton photosynthetic activity and light attenuation in Lake Kinneret: possibilities and limitations for simulation by remote sensing,” J. Plankton Res. 28, 725–736 (2006). [CrossRef]
  37. Z. Dubinsky and T. Berman, “Seasonal changes in the spectral composition of downwelling irradiance in Lake Kinneret (Israel),” Limnol. Oceanogr. 24, 652–663 (1979). [CrossRef]
  38. L. Sokoletsky, “In situ and remote sensing bio-optical methods for the estimation of phytoplankton concentration in the Gulf of Aqaba (Eilat),” Ph.D. dissertation (Bar-Ilan University, Israel, 2003).
  39. L. G. Sokoletsky and Y. Z. Yacobi, “Use of radiative transfer approximations for estimating the optical properties and mean chlorophyll a concentration from reflectance spectra in highly turbid waters,” in Proceedings of the Third International Conference “Current Problems in Optics of Natural Waters, ONW-2005,” I.Levin and G.Gilbert, eds. (D. S. Rozhdestvensky Optical Society, 2005), pp. 47–55.
  40. R. H. Stavn and A. D. Weidemann, “Shape factors, two-flow models, and the problem of irradiance inversion in estimating optical parameters,” Limnol. Oceanogr. 34, 1426–1441(1989). [CrossRef]
  41. T. Hirata, “Irradiance inversion theory to retrieve volume scattering function of seawater,” Appl. Opt. 42, 1564–1573(2003). [CrossRef] [PubMed]
  42. E. Aas, “Two-stream irradiance model for deep waters,” Appl. Opt. 26, 2095–2101 (1987). [CrossRef] [PubMed]
  43. A. Morel and H. Loisel, “Apparent optical properties of oceanic water, dependence on the molecular scattering contribution,” Appl. Opt. 37, 4765–4776 (1998). [CrossRef]
  44. E. Aas and N. K. Højerslev, “Analysis of underwater radiance observations: apparent optical properties and analytical functions describing the angular radiance distribution,” J. Geophys. Res. 104, 8015–8024 (1999). [CrossRef]
  45. A. Morel, “Optical modeling of the upper ocean in relation to its biogeneous matter content (case I waters),” J. Geophys. Res. 93, 10749–10768 (1988). [CrossRef]
  46. A. Morel and S. Maritorena, “Bio-optical properties of oceanic waters: a reappraisal,” J. Geophys. Res. 106, 7163–7180(2001). [CrossRef]
  47. L. Sokoletsky, “Comparative analysis of selected radiative transfer approaches for aquatic environments,” Appl. Opt. 44, 136–148 (2005). [CrossRef] [PubMed]
  48. L. G. Sokoletsky, O. V. Nikolaeva, V. P. Budak, L. P. Bass, R. S. Lunetta, V. S. Kuznetsov, and A. A. Kokhanovsky, “A comparison of numerical and analytical radiative-transfer solutions for plane albedo of natural waters,” J. Quant. Spectrosc. Radiat. Transfer 110, 1132–1146 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited