OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 30 — Oct. 20, 2011
  • pp: 5798–5802

Analysis of birefringent and dispersive properties of photonic crystal fibers

S. Lu, W. Li, H. Guo, and M. Lu  »View Author Affiliations

Applied Optics, Vol. 50, Issue 30, pp. 5798-5802 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (585 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Two types of high birefringence photonic crystal fiber (PCF) which import four or six big circular air holes near the elliptical-hole are proposed. Their birefringent and dispersive properties are analyzed by full-vector finite-element method (FEM). Numerical analysis demonstrates that importing the big circular hole near the center of elliptical-hole PCFs can achieve a high birefringence. When the ratio ( d / Λ ) of diameter to hole spacing is larger than 0.8, the proposed two types of PCF have a larger birefringence than that of sole elliptical air hole ones. When the ratio d / Λ is equal to 0.95, the birefringences of these two types PCF can be as high as 4.27 × 10 3 and 5.09 × 10 3 at the wavelength of 1.55 μm , respectively. Besides, PCF with the four big circular air holes has a large negative dispersion at the long wavelength in x-polarized mode, which indicates a potential in single-polarized mode dispersion compensation.

© 2011 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(260.1440) Physical optics : Birefringence
(260.2030) Physical optics : Dispersion
(260.5430) Physical optics : Polarization
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: April 14, 2011
Revised Manuscript: June 15, 2011
Manuscript Accepted: July 8, 2011
Published: October 12, 2011

S. Lu, W. Li, H. Guo, and M. Lu, "Analysis of birefringent and dispersive properties of photonic crystal fibers," Appl. Opt. 50, 5798-5802 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996). [CrossRef] [PubMed]
  2. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539(1999). [CrossRef] [PubMed]
  3. J. C. Knight, “Photonic crystal fibers,” Nature 424, 847–851(2003). [CrossRef] [PubMed]
  4. Y.-S. Sun, Y.-F. Chau, H.-H. Yeh, L.-F. Shen, T.-J. Yang, and D. P. Tsai, “High birefringence photonic crystal fiber with a complex unit cell of asymmetric elliptical air hole cladding,” Appl. Opt. 46, 5276–5281 (2007). [CrossRef] [PubMed]
  5. K. Saitoh, Y. Tsuchida, M. Koshiba, and N. A. Mortensen, “Endlessly single-mode holey fibers: the influence of core design,” Opt. Express 13, 10833–10839 (2005). [CrossRef] [PubMed]
  6. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997). [CrossRef] [PubMed]
  7. J. C. Baggett, T. M. Monro, K. Furusawa, and D. J. Richardson, “Comparative study of large-mode holey and conventional fibers,” Opt. Lett. 26, 1045–1047 (2001). [CrossRef]
  8. K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Opt. Express 11, 843–852(2003). [CrossRef] [PubMed]
  9. A. Ferrando, E. Silvestre, J. J. Miret, and Andrés, “Nearly zero ultra-flattened dispersion in photonic crystal fibers,” Opt. Lett. 25, 790–792 (2000). [CrossRef]
  10. W. Belardi, G. Bouwmans, L. Provino, and M. Douay, “Form-induced birefringence in elliptical hollow photonics crystal fiber with large mode area,” IEEE J. Quantum Electron. 41, 1558–1564 (2005). [CrossRef]
  11. Y. Yue, G. Kai, Z. Wang, Y. Lu, C. Zhang, T. Sun, Y. Li, L. Jin, J. Liu, Y. Liu, S. Yuan, and X. Dong, “Highly birefringent elliptical-hole photonic crystal fiber with two big circular air holes adjacent to the core,” IEEE Photon. Technol. Lett. 18, 2638–2640 (2006). [CrossRef]
  12. D. Chen and L. Shen, “Ultrahigh birefringent photonic crystal fiber with ultra low confinement loss,” IEEE Photon. Technol. Lett. 19, 185–187 (2007). [CrossRef]
  13. T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588–590 (2001). [CrossRef]
  14. M. Szpulak, G. Statkiewicz, J. Olszewski, T. Martynkien, W. Urbanczyk, J. Wójcik, M. Makara, J. Klimek, T. Nasilowski, F. Berghmans, and H. Thienpont, “Experimental and theoretical investigations of birefringent holey fibers with a triple defect,” Appl. Opt. 44, 2652–2658 (2005). [CrossRef] [PubMed]
  15. L. Wang, S. Lou, W. Chen, and H. Li, “Design of a single-polarization single-mode photonic crystal fiber with a near-Gaussian mode field and wide bandwidth,” Appl. Opt. 49, 6196–6200 (2010). [CrossRef] [PubMed]
  16. K. Saitoh and M. Koshiba, “Single-polarization single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett. 15, 1384–1386 (2003). [CrossRef]
  17. H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, “Absolutely single polarization photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 182–184 (2004). [CrossRef]
  18. J. Ju, W. Jin, and M. S. Demokan, “Design of single-polarization single-mode photonic crystal fiber at 1.30 and 1.55 μm,” J. Lightwave Technol. 24, 825–830 (2006). [CrossRef]
  19. D. J. J. Hu, P. Shum, C. Lu, X. Yu, G. Wang, and G. Ren, “Holey fiber design for single-polarization single-mode guidance,” Appl. Opt. 48, 4038–4043 (2009). [CrossRef] [PubMed]
  20. N. A. Issa, M. A. V. Eijkelenborg, M. Fellew, F. Cox, G. Henry, and M. C. J. Large, “Fabrication and study of microstructured optical fibers with elliptical holes,” Opt. Lett. 29, 1336–1338(2004). [CrossRef] [PubMed]
  21. F. Beltrán-Mejía, G. Chesini, E. Silvestre, A. K. George, J. C. Knight, and C. M. Cordeiro, “Ultrahigh-birefringent squeezed lattice photonic crystal fiber with rotated elliptical air holes,” Opt. Lett. 35, 544–546 (2010). [CrossRef] [PubMed]
  22. L. Wang and D. Yang, “Highly birefringent elliptical-hole rectangular-lattice photonic crystal fibers with modified air holes near the core,” Opt. Express 15, 8892–8897 (2007). [CrossRef] [PubMed]
  23. K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “Optical properties of a low-loss polarization-maintaining photonic crystal fiber,” Opt. Express 9, 676–680 (2001). [CrossRef] [PubMed]
  24. M. J. Steel and J. R. M. Osgood, “Elliptical-hole photonic crystal fibers,” Opt. Lett. 26, 229–231 (2001). [CrossRef]
  25. H. Huang, The Theoretical and Experimental Study of Photonic Crystal Fibers (Zhejiang University, 2006), pp. 30–39.
  26. F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers by the finite element method,” Opt. Fiber Technol. 6, 181–191 (2000). [CrossRef]
  27. S. Kim, C.-S. Kee, and C. G. Lee, “Modified rectangular lattice photonic crystal fibers with high birefringence and negative dispersion,” Opt. Express 17, 7952–7957 (2009). [CrossRef] [PubMed]
  28. Y. Yue, G. Kai, Z. Wang, T. Sun, L. Jin, Y. Lu, C. Zhang, J. Liu, Y. Li, Y. Liu, S. Yuan, and X. Dong, “Highly birefringent elliptical-hole photonic crystal fiber with squeezed hexagonal lattice,” Opt. Lett. 32, 469–471 (2007). [CrossRef] [PubMed]
  29. L. Wang, Study on Polarization Maintaining Photonic Crystal Fiber and Its Application on Fiber Optic Gyroscope (Beijing Jiaotong University, 2009), pp. 40–43. [PubMed]
  30. S. Lou, Z. Wang, and G. Ren, “Highly birefringent index guiding photonic crytal fibers,” Acta Opt. Sin. 24, 1310–1315(2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited