OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 30 — Oct. 20, 2011
  • pp: 5842–5860

Long Island Sound Coastal Observatory: Assessment of above-water radiometric measurement uncertainties using collocated multi and hyperspectral systems

Tristan Harmel, Alexander Gilerson, Soe Hlaing, Alberto Tonizzo, Tom Legbandt, Alan Weidemann, Robert Arnone, and Samir Ahmed  »View Author Affiliations


Applied Optics, Vol. 50, Issue 30, pp. 5842-5860 (2011)
http://dx.doi.org/10.1364/AO.50.005842


View Full Text Article

Enhanced HTML    Acrobat PDF (2025 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The Long Island Sound Coastal Observational platform (LISCO) near Northport, New York, has been recently established to support validation of ocean color radiometry (OCR) satellite data. LISCO is equipped with collocated multispectral, SeaPRISM, and hyperspectral, HyperSAS, above-water systems for OCR measurements. This combination offers the potential for improving validation activities of current and future OCR satellite missions, as well as for satellite intercomparisons and spectral characterization of coastal waters. Results of measurements made by both the multi and hyperspectral instruments, in operation since October 2009, are presented, evaluated and their associated uncertainties quantified based on observations for a period of over a year. Multi- and hyperspectral data processing as well as the data quality analysis are described and their uncertainties evaluated. The quantified intrinsic uncertainties of HyperSAS data exhibit satisfactory values, less than 5% over a large spectral range, from 340 to 740 nm , and over a large range of diurnal daylight conditions, depending on the maximum sun elevation at the solar noon. Intercomparisons between HyperSAS and SeaPRISM data revealed that an overcorrection of the sun glint effect in the current SeaPRISM processing induces errors, which are amplified through the whole data processing, especially at the shorter wavelengths. The spectral-averaged uncertainties can be decomposed as follows: (i) sun glint removal generates 2% uncertainty, (ii) sky glint removal generates strong uncertainties of the order of 15% mainly induced by sun glint overcorrection, (iii) viewing angle dependence corrections improve the data intercomparison by reducing the dispersion by 2%, (iv) normalization of atmospheric effects generates approximately 4% uncertainty. Based on this study, improvements of the sun glint correction are expected to significantly reduce the uncertainty associated with the data processing down to the level of 1%. On the other hand, strong correlations between both datasets ( R 2 > 0.96 ) demonstrate the efficacy of the above-water retrieval concept and confirm that the collocated instrumentation constitutes an important aid to above-water data quality analysis, which makes LISCO a key element of the AERONET-OC network.

© 2011 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.1320) Atmospheric and oceanic optics : Atmospheric transmittance
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(110.4234) Imaging systems : Multispectral and hyperspectral imaging

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: March 28, 2011
Revised Manuscript: June 29, 2011
Manuscript Accepted: July 22, 2011
Published: October 14, 2011

Virtual Issues
Vol. 6, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Tristan Harmel, Alexander Gilerson, Soe Hlaing, Alberto Tonizzo, Tom Legbandt, Alan Weidemann, Robert Arnone, and Samir Ahmed, "Long Island Sound Coastal Observatory: Assessment of above-water radiometric measurement uncertainties using collocated multi and hyperspectral systems," Appl. Opt. 50, 5842-5860 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-30-5842


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. IOCCG, “Why ocean colour? The societal benefits of ocean-colour technology,” in Reports of the International Ocean-Colour Coordinating Group, T.Platt, N.Hoepffner, V.Stuart, and C.Brown, eds. (IOCCG, 2008).
  2. H. R. Gordon and D. K. Clark, “Clear water radiances for atmospheric correction of coastal zone color scanner imagery,” Appl. Opt. 20, 4175–4180 (1981). [CrossRef] [PubMed]
  3. J. L. Mueller, A. Morel, R. Frouin, C. Davis, R. Arnone, K. Carder, Z. P. Lee, R. G. Steward, S. Hooker, C. D. Mobley, S. McLean, B. Holben, M. Miller, C. Pietras, K. D. Knobelspiesse, G. S. Fargion, J. Porter, and K. Voss, “Ocean optics protocols for satellite ocean color sensor validation, Revision 4, Vol. III: Radiometric measurements and data analysis protocols,” NASA/TM-2003-211621, (NASA, 2003).
  4. A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remote-sensing problem,” Appl. Opt. 35, 4850–4862 (1996). [CrossRef] [PubMed]
  5. H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth Observing System era,” J. Geophys. Res. 102, 17081–17106 (1997). [CrossRef]
  6. K. G. Ruddick, F. Ovidio, and M. Rijkeboer, “Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters,” Appl. Opt. 39, 897–912 (2000). [CrossRef]
  7. P. J. Werdell, B. A. Franz, and S. W. Bailey, “Evaluation of shortwave infrared atmospheric correction for ocean color remote sensing of Chesapeake Bay,” Remote Sens. Environ. 114, 2238–2247 (2010). [CrossRef]
  8. M. H. Wang and H. R. Gordon, “Calibration of ocean color scanners: how much error is acceptable in the near infrared?” Remote Sens. Environ. 82, 497–504 (2002). [CrossRef]
  9. B. A. Franz, S. W. Bailey, P. J. Werdell, and C. R. McClain, “Sensor-independent approach to the vicarious calibration of satellite ocean color radiometry,” Appl. Opt. 46, 5068–5082(2007). [CrossRef] [PubMed]
  10. S. W. Bailey and P. J. Werdell, “A multi-sensor approach for the on-orbit validation of ocean color satellite data products,” Remote Sens. Environ. 102, 12–23 (2006). [CrossRef]
  11. D. K. Clark, M. A. Yarbrough, M. E. Feinholz, S. Flora, W. Broenkow, Y. S. Kim, B. C. Johnson, S. W. Brown, M. Yuen, and J. L. Mueller, “MOBY, a radiometric buoy for performance monitoring and vicarious calibration of satellite ocean color sensors: Measurement and data analysis protocols,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision (NASA, 2003).
  12. D. Antoine, F. d'Ortenzio, S. B. Hooker, G. Bécu, B. Gentili, D. Tailliez, and A. J. Scott, “Assessment of uncertainty in the ocean reflectance determined by three satellite ocean color sensors (MERIS, SeaWiFS and MODIS-A) at an offshore site in the Mediterranean Sea (BOUSSOLE project),” J. Geophys. Res. 113, C07013 (2008). [CrossRef]
  13. G. Zibordi, B. N. Holben, I. Slutsker, D. Giles, D. D’Alimonte, F. Mélin, J. F. Berthon, D. Vandemark, H. Feng, and G. Schuster, “AERONET-OC: a network for the validation of ocean color primary radiometric products,” J. Atmos. Ocean. Technol. 26, 1634–1651 (2009). [CrossRef]
  14. S. B. Hooker, G. Lazin, G. Zibordi, and S. McLean, “An evaluation of above-and in-water methods for determining water-leaving radiances,” J. Atmos. Ocean. Technol. 19, 486–515(2002). [CrossRef]
  15. G. Zibordi, F. Mélin, S. B. Hooker, D. D'Alimonte, and B. Holben, “An autonomous above-water system for the validation of ocean color radiance data,” IEEE Trans. Geosci. Remote Sens. 42, 401–415 (2004). [CrossRef]
  16. S. Hlaing, T. Harmel, A. Ibrahim, I. Ioannou, A. Tonizzo, A. Gilerson, and S. Ahmed, “Validation of ocean color satellite sensors using coastal observational platform in Long Island Sound,” Proc. SPIE 7825, , 782504 (2010). [CrossRef]
  17. A. Tonizzo, T. Harmel, A. Ibrahim, S. Hlaing, I. Ioannou, A. Gilerson, J. Chowdhary, B. Gross, F. Moshary, and S. Ahmed, “Sensitivity of the above water polarized reflectance to the water composition,” Proc. SPIE 7825, 78250F (2010). [CrossRef]
  18. G. Zibordi, S. B. Hooker, J. F. Berthon, and D. D'Alimonte, “Autonomous above-water radiance measurements from an offshore platform: a field assessment experiment,” J. Atmos. Ocean. Technol. 19, 808–819 (2002). [CrossRef]
  19. D. A. Aurin, H. M. Dierssen, M. S. Twardowski, and C. S. Roesler, “Optical complexity in Long Island Sound and implications for coastal ocean color remote sensing,” J. Geophys. Res. 115, C07011 (2010). [CrossRef]
  20. B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, and T. Nakajima, “AERONET-A federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998). [CrossRef]
  21. C. D. Mobley, “Estimation of the remote-sensing reflectance from above-surface measurements,” Appl. Opt. 38, 7442–7455(1999). [CrossRef]
  22. O. Dubovik and M. D. King, “A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements,” J. Geophys. Res. 105, 20673–20696 (2000). [CrossRef]
  23. Z. P. Lee, Y. H. Ahn, C. Mobley, and R. Arnone, “Removal of surface-reflected light for the measurement of remote-sensing reflectance from an above-surface platform,” Opt. Express 18, 26313–26324 (2010). [CrossRef] [PubMed]
  24. C. Cox and W. Munk, “Statistics of the sea surface derived from sun glitter,” J. Mar. Res. 13, 198–227 (1954).
  25. S. Kay, J. D. Hedley, and S. Lavender, “Sun glint correction of high and low spatial resolution images of aquatic scenes: a review of methods for visible and near-infrared wavelengths,” Rem. Sens. 1, 697–730 (2009). [CrossRef]
  26. S. B. Hooker, G. Zibordi, J. F. Berthon, and J. W. Brown, “Above-water radiometry in shallow coastal waters,” Appl. Opt. 43, 4254–4268 (2004). [CrossRef] [PubMed]
  27. A. Morel, D. Antoine, and B. Gentili, “Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase function,” Appl. Opt. 41, 6289–6306(2002). [CrossRef] [PubMed]
  28. G. W. Paltridge and C. M. R. Platt, Radiative Processes in Meteorology and Climatology (Elsevier, 1977).
  29. D. Tanre, M. Herman, P. Y. Deschamps, and A. Deleffe, “Atmospheric modeling for space measurements of ground reflectances, including bidirectional properties,” Appl. Opt. 18, 3587–3594 (1979). [CrossRef] [PubMed]
  30. G. Thuillier, M. Herse, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. C. Simon, and H. Mandel, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions,” Sol. Phys. 214, 1–22 (2003). [CrossRef]
  31. S. Y. Kotchenova, E. F. Vermote, R. Matarrese, and F. J. Klemm, “Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: Path radiance,” Appl. Opt. 45, 6762–6774 (2006). [CrossRef] [PubMed]
  32. K. Bogumil, J. Orphal, T. Homann, S. Voigt, P. Spietz, O. C. Fleischmann, A. Vogel, M. Hartmann, H. Kromminga, and H. Bovensmann, “Measurements of molecular absorption spectra with the SCIAMACHY pre-flight model: instrument characterization and reference data for atmospheric remote-sensing in the 230–2380 nm region,” J. Photochem. Photobiol. A Chem. 157, 167–184 (2003). [CrossRef]
  33. C. Cox and W. Munk, “Measurement of the roughness of the sea surface from photographs of the sun’s glitter,” J. Opt. Soc. Am. 44, 838–850 (1954). [CrossRef]
  34. T. Nakajima and M. Tanaka, “Effect of wind-generated waves on the transfer of solar radiation in the atmosphere-ocean system,” J. Quant. Spectrosc. Radiat. Transfer 29, 521–537(1983). [CrossRef]
  35. Z. Lee, K. L. Carder, S. K. Hawes, R. G. Steward, T. G. Peacock, and C. O. Davis, “Model for interpretation of hyperspectral remote-sensing reflectance,” Appl. Opt. 33, 5721–5732(1994). [CrossRef] [PubMed]
  36. E. J. Hochberg, S. Andrefouet, and M. R. Tyler, “Sea surface correction of high spatial resolution Ikonos images to improve bottom mapping in near-shore environments,” IEEE Trans. Geosci. Remote Sens. 41, 1724–1729 (2003). [CrossRef]
  37. IOCCG, “Minimum requirements for an operational, ocean-colour sensor for the open ocean,” in Reports of the International Ocean Colour Coordinating Group, No 1, A.Morel, ed. (IOCCG, 1997).
  38. Y.-J. Park and K. Ruddick, “Model of remote-sensing reflectance including bidirectional effects for case 1 and case 2 waters,” Appl. Opt. 44, 1236–1249 (2005). [CrossRef] [PubMed]
  39. Z. P. Lee, K. Du, K. J. Voss, G. Zibordi, B. Lubac, R. Arnone, and A. Weidemann, “An inherent-optical-property-centered approach to correct the angular effects in water-leaving radiance,” Appl. Opt. 50, 3155–3167 (2011). [CrossRef] [PubMed]
  40. G. W. Kattawar and C. N. Adams, “Stokes vector calculations of the submarine light field in an atmosphere-ocean with scattering according to a Rayleigh phase matrix: effect of interface refractive index on radiance and polarization,” Limnol. Oceanogr. 34, 1453–1472 (1989). [CrossRef]
  41. B. Fougnie, R. Frouin, P. Lecomte, and P. Y. Deschamps, “Reduction of skylight reflection effects in the above-water measurement of diffuse marine reflectance,” Appl. Opt. 38, 3844–3856 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited