OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 30 — Oct. 20, 2011
  • pp: 5883–5888

All-optical controlling of the focal intensity of a liquid crystal polymer microlens array

San-Yi Huang, Tung-Chen Tung, Hung-Chang Jau, Jui-Hsiang Liu, and Andy Ying-Guey Fuh  »View Author Affiliations

Applied Optics, Vol. 50, Issue 30, pp. 5883-5888 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (636 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The current work demonstrates a liquid crystalline polymer microlens array (LCP MLA) with an all- optically tunable and multistable focal intensity through photochemical phase transition. The operational mechanism of the optical tuning is associated with the photoisomerization effect. The proposed LCP MLA device has a focusing unit based on a birefringence LCP and a tuning unit with a light responsive material to control the polarization state of the incident probe beam. The optically variable refractive indices of LCP enable a positive or negative MLA that can control the polarization of incident light to be realized.

© 2011 Optical Society of America

OCIS Codes
(080.3630) Geometric optics : Lenses
(160.3710) Materials : Liquid crystals
(220.3630) Optical design and fabrication : Lenses
(230.3720) Optical devices : Liquid-crystal devices
(130.4815) Integrated optics : Optical switching devices

Original Manuscript: May 23, 2011
Revised Manuscript: August 15, 2011
Manuscript Accepted: August 15, 2011
Published: October 17, 2011

San-Yi Huang, Tung-Chen Tung, Hung-Chang Jau, Jui-Hsiang Liu, and Andy Ying-Guey Fuh, "All-optical controlling of the focal intensity of a liquid crystal polymer microlens array," Appl. Opt. 50, 5883-5888 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. E. Miroshnichenko, E. Brasselet, and Y. S. Kivshar, “All-optical switching and multistability in photonic structures with liquid crystal defects,” Appl. Phys. Lett. 92, 253306(2008). [CrossRef]
  2. E. Brasselet, A. E. Miroshnichenko, D. F. Chen, W. Krolikowski, and Y. S. Kivshar, “Polarizational nonlinear optical response of photonic structures with a liquid crystal defect,” Opt. Lett. 34, 488–490 (2009). [CrossRef] [PubMed]
  3. D. E. Lucchetta, F. Vita, and F. Simoni, “All-optical switching of diffraction gratings infiltrated with dye-doped liquid crystals,” Appl. Phys. Lett. 97, 231112 (2010). [CrossRef]
  4. U. Hrozhyk, S. Nersisyan, S. Serak, N. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Optical switching of liquid-crystal polarization gratings with nanosecond pulses,” Opt. Lett. 34, 2554–2556 (2009). [CrossRef] [PubMed]
  5. L. De Sio, A. Veltri, C. Umeton, S. Serak, and N. Tabiryan, “All-optical switching of holographic gratings made of polymer-liquid-crystal-polymer slices containing azo-compounds,” Appl. Phys. Lett. 93, 181115 (2008). [CrossRef]
  6. H. C. Jau, T. H. Lin, R. X. Fung, S. Y. Huang, J. H. Liu, and A. Y. G. Fuh, “Optically tunable beam steering grating based n azobenzene doped cholesteric liquid crystal,” Opt. Express 18, 17498–17503 (2010). [CrossRef] [PubMed]
  7. S. Y. Huang, Y. S. Chen, H. C. Jau, M. S. Li, J. H. Liu, P. C. Yang, and A. Y. G. Fuh, “Biphotonic effect-induced phase transition in dye-doped cholesteric liquid crystals and their applications,” Opt. Commun. 283, 1726–1731(2010). [CrossRef]
  8. H. Ono and M. Ito, “All-optical switching in a dye-doped liquid crystal Fabry–Perot device,” Jpn. J. Appl. Phys. 40, L206–L208 (2001). [CrossRef]
  9. L. Petti, P. Mormile, Y. Ren, M. Abbate, P. Musto, G. Ragosta, and W. J. Blau, “Optical switching property from a laser beam propagating in a polymer dispersed liquid crystal film,” Liq. Cryst. 28, 1831–1837 (2001). [CrossRef]
  10. L. C. Lin, H. C. Jau, T. H. Lin, and A. Y. G. Fuh, “Highly efficient and polarization-independent Fresnel lens based on dye-doped liquid crystal,” Opt. Express 15, 2900–2906(2007). [CrossRef] [PubMed]
  11. Y. H. Fan, H. W. Ren, and S. T. Wu, “Switchable Fresnel lens using polymer-stabilized liquid crystals,” Opt. Express 11, 3080–3086 (2003). [CrossRef] [PubMed]
  12. H. W. Ren, Y. H. Fan, and S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83, 1515–1517 (2003). [CrossRef]
  13. T. H. Lin, Y. H. Huang, A. Y. G. Fuh, and S. T. Wu, “Polarization controllable Fresnel lens using dye-doped liquid crystals,” Opt. Express 14, 2359–2364 (2006). [CrossRef] [PubMed]
  14. M. V. Gryaznova, V. V. Danilov, M. A. Belyaeva, P. A. Shakhverdov, O. V. Chistyakova, and A. I. Khrebtov, “Optical limiters based on liquid-crystal microlenses,” Opt. Spectrosc. 92, 614–618 (2002). [CrossRef]
  15. S. Grilli, L. Miccio, V. Vespini, A. Finizio, S. De Nicola, and P. Ferraro, “Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates,” Opt. Express 16, 8084–8093 (2008). [CrossRef] [PubMed]
  16. K. H. Jeong, G. L. Liu, N. Chronis, and L. P. Lee, “Tunable microdoublet lens array,” Opt. Express 12, 2494–2500(2004). [CrossRef] [PubMed]
  17. S. Masuda, T. Nose, and S. Sato, “Optical properties of a polymer-stabilized liquid crystal microlens,” Jpn. J. Appl. Phys. 37, L1251–L1253 (1998). [CrossRef]
  18. Y. H. Fan, H. W. Ren, X. Liang, H. Y. Wang, and S. T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Disp. Technol. 1, 151–156(2005). [CrossRef]
  19. H. W. Ren, Y. H. Fan, Y. H. Lin, and S. T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun. 247, 101–106(2005). [CrossRef]
  20. L. Miccio, A. Finizio, S. Grilli, V. Vespini, M. Paturzo, S. De Nicola, and P. Ferraro, “Tunable liquid microlens arrays in electrode-less configuration and their accurate characterization by interference microscopy,” Opt. Express 17, 2487–2499(2009). [CrossRef] [PubMed]
  21. Y. Choi, H. R. Kim, K. H. Lee, Y. M. Lee, and J. H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer,” Appl. Phys. Lett. 91, 221113 (2007). [CrossRef]
  22. Y. M. Lee, K. H. Lee, Y. Choi, and J. H. Kim, “Fast bistable microlens arrays based on a birefringent layer and ferroelectric liquid crystals,” Jpn. J. Appl. Phys. 47, 6343–6346(2008). [CrossRef]
  23. S.-Y. Huang, T.-C. Tung, C.-L. Ting, H.-C. Jau, M.-S. Li, H.-K. Hsu, and A. Y.-G. Fuh, “Polarization-dependent optical tuning of focal intensity of liquid crystal polymer microlens array,” Appl. Phys. B 104, 93–97 (2011). [CrossRef]
  24. T. H. Lin, H. C. Jau, S. Y. Hung, H. R. Fuh, and A. Y. G. Fuh, “Photoaddressable bistable reflective liquid crystal display,” Appl. Phys. Lett. 89, 021116 (2006). [CrossRef]
  25. S. Y. Huang, S. T. Wu, and A. Y. G. Fuh, “Optically switchable twist nematic grating based on a dye-doped liquid crystal film,” Appl. Phys. Lett. 88, 041104(2006). [CrossRef]
  26. C. H. Gooch and H. A. Tarry, “Optical properties of twisted nematic liquid-crystal structures with twist angles less than 90 degrees,” J. Phys. D 8, 1575–1584 (1975). [CrossRef]
  27. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited