OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 31 — Nov. 1, 2011
  • pp: 5917–5920

Photon-counting compressive sensing laser radar for 3D imaging

G. A. Howland, P. B. Dixon, and J. C. Howell  »View Author Affiliations


Applied Optics, Vol. 50, Issue 31, pp. 5917-5920 (2011)
http://dx.doi.org/10.1364/AO.50.005917


View Full Text Article

Enhanced HTML    Acrobat PDF (268 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We experimentally demonstrate a photon-counting, single-pixel, laser radar camera for 3D imaging where transverse spatial resolution is obtained through compressive sensing without scanning. We use this technique to image through partially obscuring objects, such as camouflage netting. Our implementation improves upon pixel-array based designs with a compact, resource-efficient design and highly scalable resolution.

© 2011 Optical Society of America

OCIS Codes
(100.6890) Image processing : Three-dimensional image processing
(110.3080) Imaging systems : Infrared imaging
(280.3640) Remote sensing and sensors : Lidar
(110.3010) Imaging systems : Image reconstruction techniques

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: May 23, 2011
Revised Manuscript: August 16, 2011
Manuscript Accepted: August 17, 2011
Published: October 20, 2011

Citation
G. A. Howland, P. B. Dixon, and J. C. Howell, "Photon-counting compressive sensing laser radar for 3D imaging," Appl. Opt. 50, 5917-5920 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-31-5917


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. J. Kane, W. J. Kozlovsky, R. L. Byer, and C. E. Byvik, “Coherent laser radar at 1.06 μm using nd:yag lasers,” Opt. Lett. 12, 239–241 (1987). [CrossRef] [PubMed]
  2. M. A. Albota, “Three-dimensional imaging laser radars with geiger-mode avalange photodiode arrays,” Lincoln Lab. J. 13, 351–367 (2002).
  3. B. W. Schilling, D. N. Barr, G. C. Templeton, L. J. Mizerka, and C. W. Trussell, “Multiple-return laser radar for three-dimensional imaging through obscurations,” Appl. Opt. 41, 2791–2799 (2002). [CrossRef] [PubMed]
  4. J. Degnan, R. Machan, E. Leventhal, D. Lawrence, G. Jodor, and C. Field, “Inflight performance of a second-generation photon-counting 3d imaging lidar,” Proc. SPIE 6950, 695007 (2008). [CrossRef]
  5. For example, see www.advancedscientificconcepts.com or www.selex-comms.com.
  6. R. M. Marino and W. R. Davis, Jr., “Real-time 3d ladar imaging,” Lincoln Lab. J. 15, 23–35 (2005).
  7. V. C. Coffey, “Seeing in the dark: Defense applications of IR imaging,” Opt. Photon. News 22(4), 27–31 (2011). [CrossRef]
  8. M. A. Itzler, M. Entwistle, M. Owens, K. Patel, X. Jiang, K. Slomkowski, S. Rangwala, P. F. Zalud, T. Senko, J. Tower, and J. Ferraro, “Geiger-mode avalanche photodiode focal plane arrays for three-dimensional imaging ladar,” Proc. SPIE 7808, 78080C (2010). [CrossRef]
  9. G. Smith, J. Donnelly, K. McIntosh, E. Duerr, D. Shaver, S. Verghese, J. Funk, L. Mahoney, K. Molvar, D. Chapman, and D. Oakley, “Reliable large format arrays of geiger-mode avalanche photodiodes,” in 20th International Conference on Indium Phosphide and Related Materials, 2008 (IPRM 2008) (2008), pp. 1–3. [CrossRef]
  10. A. McIntosh, “Arrays of gieger-mode avalanche photodiodes for ladar and laser communications,” in Applications of Lasers for Sensing and Free Space Communications (Optical Society of America, 2010), p. LSWC1.
  11. M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91(2008). [CrossRef]
  12. R. Baraniuk, “Compressive sensing [lecture notes],” IEEE Signal Process. Mag. 24, 118–121 (2007). [CrossRef]
  13. D. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006). [CrossRef]
  14. E. Candes and M. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag. 25, 21–30 (2008). [CrossRef]
  15. M. Figueiredo, R. Nowak, and S. Wright, “Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems,” IEEE J. Sel. Top. Signal Process. 1, 586–597 (2007). [CrossRef]
  16. E. Cands and J. Romberg, “Sparsity and incoherence in compressive sampling,” Inverse Probl. 23, 969–985 (2007). [CrossRef]
  17. E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509(2006). [CrossRef]
  18. D. Dudley, W. M. Duncan, and J. Slaughter, “Emerging digital micromirror device (dmd) applications,” Proc. SPIE 4985,  14–25 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited