OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 31 — Nov. 1, 2011
  • pp: 5938–5943

Optimization design of diffractive phase elements for beam shaping

Xia Yu, Ke-Qiu Chen, and Yan Zhang  »View Author Affiliations


Applied Optics, Vol. 50, Issue 31, pp. 5938-5943 (2011)
http://dx.doi.org/10.1364/AO.50.005938


View Full Text Article

Enhanced HTML    Acrobat PDF (399 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An improved approach called the weighted YG algorithm for the design of the diffractive phase element (DPE) that implements beam shaping in the fractional Fourier transform domain and free space is presented. Modeling designs of the DPE are carried out for several fractional orders and different param eters of the beam for optimally converting a Gaussian profile into a uniform beam. We found that our algorithm can improve the beam shaping effect, reduce the error function, and increase uniformity of light intensity.

© 2011 Optical Society of America

OCIS Codes
(050.1380) Diffraction and gratings : Binary optics
(090.1970) Holography : Diffractive optics

ToC Category:
Diffraction and Gratings

History
Original Manuscript: May 25, 2011
Revised Manuscript: July 27, 2011
Manuscript Accepted: August 23, 2011
Published: October 25, 2011

Citation
Xia Yu, Ke-Qiu Chen, and Yan Zhang, "Optimization design of diffractive phase elements for beam shaping," Appl. Opt. 50, 5938-5943 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-31-5938


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Bengtsson, “Kinoform-only Gaussian-to-rectangle beam shaper for a semiconductor laser,” Appl. Opt. 35, 3807–3814(1996). [CrossRef] [PubMed]
  2. J. Jia, C. Zhou, X. Sun, and L. Liu, “Superresolution laser beam shaping,” Appl. Opt. 43, 2112–2117 (2004). [CrossRef] [PubMed]
  3. W. Mohammed and X. Gu, “Long-period grating and its application in laser beam shaping in the 1.0 m wavelength region,” Appl. Opt. 48, 2249–2254 (2009). [CrossRef] [PubMed]
  4. R. Pereira, B. Weichelt, D. Liang, P. J. Morais, H. Gouveia, M. Abdou-Ahmed, A. Voss, and T. Graf, “Efficient pump beam shaping for high-power thin-disk laser systems,” Appl. Opt. 49, 5157–5162 (2010). [CrossRef] [PubMed]
  5. B. Mercier, J. P. Rousseau, A. Jullien, and L. Antonucci, “Nonlinear beam shaper for femtosecond laser pulses, from Gaussian to flat-top profile,” Opt. Commun. 283, 2900–2907 (2010). [CrossRef]
  6. Y.-H. Chang, Y. Ishii, and K. Murata, “Reshaping collimated laser beams with Gaussian profile to uniform profile,” Appl. Opt. 22, 3644–3647 (1983). [CrossRef]
  7. J. Jahns, M. M. Downs, M. E. Prise, N. Streibl, and S. J. Walker, “Dammann gratings for laser beam shaping,” Opt. Eng. 28, 1267–1275 (1989).
  8. M. D. McNeill and T. C. Poon, “Gaussian-beam profile shaping by acousto-optic Bragg diffraction,” Appl. Opt. 33, 4508–4515(1994). [CrossRef] [PubMed]
  9. H. T. Yura and T. S. Rose, “Gaussian beam transfer through hard-aperture optics,” Appl. Opt. 34, 6826–6828 (1995). [CrossRef] [PubMed]
  10. L. V. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar, “Beam shaping by a periodic structure with negative refraction,” Appl. Phys. Lett. 82, 3820–3822 (2003). [CrossRef]
  11. Z.-J. Liu, H.-F. Zhao, J.-L. Liu, M. A. Ahmad, and S. Liu, “Generation of hollow Gaussian beam by spatial filtering,” Opt. Lett. 32, 2076–2078 (2007). [CrossRef] [PubMed]
  12. Z.-J. Liu, J.-M. Dai, X.-G. Sun, and S.-T. Liu, “Generation of hollow Gaussian beam by phase-only filtering,” Opt. Express 16, 19926–19933 (2008). [CrossRef] [PubMed]
  13. Z.-B. Tian, M. Nix, and S. H. Yam, “Laser beam shaping using a single-mode fiber abrupt taper,” Opt. Lett. 34, 229–231(2009). [CrossRef] [PubMed]
  14. M. Fratz, S. Sinzinger, and D. Giel, “Design and fabrication of polarization-holographic elements for laser beam shaping,” Appl. Opt. 48, 2669–2677 (2009). [CrossRef] [PubMed]
  15. J. Liang, R. N. Kohn Jr., M. F. Becker, and D. J. Heinzen, “High-precision laser beam shaping using a binary-amplitude spatial light modulator,” Appl. Opt. 49, 1323–1330 (2010). [CrossRef] [PubMed]
  16. A. Haghighatzadeh and H. Golnabi, “Flat-top beam profile generated using a fiber-bundle prism-coupled beam shaper,” Opt. Commun. 284, 2817–2824 (2011). [CrossRef]
  17. Y. Zhang, B.-Z. Dong, B.-Y. Gu, and G.-Z. Yang, “Beam shaping in the fractional Fourier transform domain,” J. Opt. Soc. Am. A 15, 1114–1120 (1998). [CrossRef]
  18. J. Cordingley, “Application of a binary diffractive optic for beam shaping in semiconductor processing by lasers,” Appl. Opt. 32, 2538–2549 (1993). [CrossRef] [PubMed]
  19. N. Passilly, M. Fromager, L. Mechin, C. Gunther, S. Eimer, T. M. Brahim, and K. A. Ameur, “1-D laser beam shaping using an adjustable binary diffractive optical element,” Opt. Commun. 241, 465–473 (2004). [CrossRef]
  20. C. Zhang and A. Kar, “Diffractive optical elements for pitchfork beam shaping,” Opt. Eng. 48, 078001 (2009). [CrossRef]
  21. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).
  22. J. R. Fienup, “Iterative method applied to image reconstruction and to computer-generated holograms,” Opt. Eng. 19, 297–306 (1980).
  23. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758–2769 (1982). [CrossRef] [PubMed]
  24. J. R. Fienup and C. C. Wackerman, “Phase-retrieval stagnation problems and solutions,” J. Opt. Soc. Am. A 3, 1897–1907(1986). [CrossRef]
  25. G.-Z. Yang, B.-Z. Dong, B.-Y. Gu, J.-Y. Zhuang, and O. K. Ersoy, “Gerchberg-Saxton and Yang-Gu algorithms for phase retrieval in a nonunitary transform system:a comparison,” Appl. Opt. 33, 209–218 (1994). [CrossRef] [PubMed]
  26. B.-Y. Gu, G.-Z. Yang, and B.-Z. Dong, “General theory for performing an optical transform,” Appl. Opt. 25, 3197–3206(1986). [CrossRef] [PubMed]
  27. S.-H. Yan, “Research on the weighted Yang-Gu algorithm,” Acta Photon. Sin. 36, 530–535 (2007). [CrossRef]
  28. D. Mendlovic and H. M. Ozaktas, “Fractional Fourier transforms and their optical implementation,” J. Opt. Soc. Am. A 10, 1875–1881 (1993). [CrossRef]
  29. S.-G. Zhou and X.-J. Shen, “Influence of optical element misalignment of beam spread collimation optical system on Gaussian beam propagation and transformation,” J. Appl. Opt. 29, 253–256 (2008). [CrossRef]
  30. S.-H. Tao and X.-C. Yuan, “Practical implementation of the phase-quantization technique in an iterative Fourier-transform algorithm,” Appl. Opt. 43, 2089–2092 (2004). [CrossRef] [PubMed]
  31. W. Hsu and C. Lin, “Optimal quantization method for uneven-phase diffractive optical elements by use of a modified iterative Fourier-transform algorithm,” Appl. Opt. 44, 5802–5808(2005). [CrossRef] [PubMed]
  32. H. Duadi and Z. Zalevsky, “Optimized iterative quantization algorithm for phase-only beam shaping masks,” Opt. Commun. 283, 951–957 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited