OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 31 — Nov. 1, 2011
  • pp: 5966–5969

All-optical thermo-plasmonic device

Pidishety Shankar and Nirmal K. Viswanathan  »View Author Affiliations

Applied Optics, Vol. 50, Issue 31, pp. 5966-5969 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (366 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate an all-optical thermo-plasmonic effect to switch/modulate the surface plasmon resonance signal intensity excited at the metal-air interface. This optically addressed thermo-plasmonic measurement scheme is suitable to amplify very small changes in the complex dielectric constant ( ε m ( T ) ) of thin gold (Au) film, induced by the Ar + laser. The predominant contributions due to small but highly repeatable transient photo-thermal effects in the complex metal dielectric constant is confirmed to be the reason behind the highly reproducible all-optical thermo-plasmonic device performance presented here.

© 2011 Optical Society of America

OCIS Codes
(140.6810) Lasers and laser optics : Thermal effects
(240.0240) Optics at surfaces : Optics at surfaces
(240.0310) Optics at surfaces : Thin films
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

Original Manuscript: May 24, 2011
Revised Manuscript: August 29, 2011
Manuscript Accepted: September 7, 2011
Published: October 26, 2011

Pidishety Shankar and Nirmal K. Viswanathan, "All-optical thermo-plasmonic device," Appl. Opt. 50, 5966-5969 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. K. Ozdemir and G. Turhan-Sayan, “Temperature effects on surface plasmon resonance: design considerations for an optical temperature sensor,” J. Lightwave Technol. 21, 805–814 (2003). [CrossRef]
  2. H. P. Chiang, C.-W. Chen, J. J. Wu, H. L. Li, T. Y. Lin, E. J. Sanchez, and P. T. Leung, “Effects of temperature on the surface plasmon resonance at a metal-semiconductor interface,” Thin Solid Films 515, 6953–6961 (2007). [CrossRef]
  3. I. T. Kim and K. D. Kihm, “Full-field and real-time surface plasmon resonance imaging thermometry,” Opt. Lett. 32, 3456–3458 (2007). [CrossRef] [PubMed]
  4. K.-Q. Lin, L.-M. Wei, D.-G. Zhang, R.-S. Zheng, P. Wang, Y.-H. Lu, and H. Ming, “Temperature effects on prism-based surface plasmon resonance sensor,” Chin. Phys. Lett. 24, 3081–3084 (2007). [CrossRef]
  5. C. S. Moreira, A. M. N. Lima, H. Neff, and C. Thirstrup, “Temperature-dependent sensitivity of surface plasmon resonance sensors at the gold-water interface,” Sens. Actuators B 134, 854–862 (2008). [CrossRef]
  6. S. Saha, N. Mehan, K. Sreenivas, and V. Gupta, “Temperature dependent optical properties of (002) oriented ZnO thin film using surface plasmon resonance,” Appl. Phys. Lett. 95, 071106 (2009). [CrossRef]
  7. A. L. Lereu, A. Passian, R. H. Farahi, N. F. van Hulst, T. L. Ferrell, and T. Thundat, “Thermoplasmonic shift and dispersion in thin metal films,” J. Vac. Sci. Technol. A 26, 836–841(2008). [CrossRef]
  8. R. H. M. Groeneveld, R. Prrik, and Ad Lagendijk, “Ultrafast relaxation of electrons by surface plasmons at a thin silver film,” Phys. Rev. Lett. 64, 784–787 (1990). [CrossRef] [PubMed]
  9. S. Herminghuas and P. Leiderer, “Surface plasmon enhanced transient thermoreflectance,” Appl. Phys. A 51, 350–353(1990). [CrossRef]
  10. X. Xiao, J. Xiang, and F. Zhou, “Laser-induced thermal effect in surface plasmon resonance,” Anal. Chim. Acta 676, 75–80(2010). [CrossRef] [PubMed]
  11. A. Passian, A. L. Lereu, E. T. Arakawa, A. Wig, T. Thundat, and T. L. Ferrell, “Modulation of multiple photon energies by use of surface plasmons,” Opt. Lett. 30, 41–43 (2005). [CrossRef] [PubMed]
  12. A. L. Lereu, A. Passian, J-P. Goudonnet, T. Thundat, and T. L. Ferrell, “Optical modulation processes in thin films based on thermal effects on surface plasmons,” Appl. Phys. Lett. 86, 154101 (2005). [CrossRef]
  13. A. Passian, A. L. Lereu, R. H. Ritchie, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Surface plasmon assisted thermal coupling of multiple photon energies,” Thin Solid Films 497, 315–320 (2006). [CrossRef]
  14. E. Kretschmann and H. Raether, "Radiative decay of non-radiative surface plasmons excited by light," Z. Naturforsch. A 23, 2135–2316 (1968).
  15. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer Verlag, 1986).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited