OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 31 — Nov. 1, 2011
  • pp: 5990–5998

High-precision diode-laser-based temperature measurement for air refractive index compensation

Tuomas Hieta, Mikko Merimaa, Markku Vainio, Jeremias Seppä, and Antti Lassila  »View Author Affiliations


Applied Optics, Vol. 50, Issue 31, pp. 5990-5998 (2011)
http://dx.doi.org/10.1364/AO.50.005990


View Full Text Article

Enhanced HTML    Acrobat PDF (567 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a laser-based system to measure the refractive index of air over a long path length. In optical distance measurements, it is essential to know the refractive index of air with high accuracy. Commonly, the refractive index of air is calculated from the properties of the ambient air using either Ciddor or Edlén equations, where the dominant uncertainty component is in most cases the air temperature. The method developed in this work utilizes direct absorption spectroscopy of oxygen to measure the average temperature of air and of water vapor to measure relative humidity. The method allows measurement of temperature and humidity over the same beam path as in optical distance measurement, providing spatially well-matching data. Indoor and outdoor measurements demonstrate the effectiveness of the method. In particular, we demonstrate an effective compensation of the refractive index of air in an interferometric length measurement at a time-variant and spatially nonhomogeneous temperature over a long time period. Further, we were able to demonstrate 7 mK RMS noise over a 67 m path length using a 120 s sample time. To our knowledge, this is the best temperature precision reported for a spectroscopic temperature measurement.

© 2011 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.6780) Instrumentation, measurement, and metrology : Temperature
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.2020) Lasers and laser optics : Diode lasers

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: May 2, 2011
Revised Manuscript: September 9, 2011
Manuscript Accepted: September 16, 2011
Published: October 27, 2011

Citation
Tuomas Hieta, Mikko Merimaa, Markku Vainio, Jeremias Seppä, and Antti Lassila, "High-precision diode-laser-based temperature measurement for air refractive index compensation," Appl. Opt. 50, 5990-5998 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-31-5990


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. P. Birch and M. J. Downs, “The results of a comparison between calculated and measured values of the refractive index of air,” J. Phys. E 21, 694–695 (1988). [CrossRef]
  2. G. Bonsch and E. Potulski, “Measurement of the refractive index of air and comparison with modified Edlén’s formulae,” Metrologia 35, 133–139 (1998). [CrossRef]
  3. B. Edlen, “The refractive index of air,” Metrologia 2, 71–80(1966). [CrossRef]
  4. P. E. Ciddor, “Refractive index of air: new equations for the visible and near infrared,” Appl. Opt. 35, 1566–1573 (1996). [CrossRef] [PubMed]
  5. A. Lassila, “Updated performance and uncertainty budget of MIKES’ line scale interferometer,” in Proceedings of 4th EUSPEN International Conference (EUSPEN, 2004). pp. 258–259.
  6. A. Lassila, M. Kari, H. Koivula, U. Koivula, J. Kortstrom, E. Leinonen, J. Manninen, J. Manssila, T. Mansten, T. Merilainen, J. Muttilainen, J. Nissila, R. Nyblom, K. Riski, J. Sarilo, and H. Isotalo, “Design and performance of an advanced metrology building for MIKES,” Measurement 44, 399–425 (2011). [CrossRef]
  7. V. Korpelainen and A. Lassila, “Acoustic method for determination of the effective temperature and refractive index of air in accurate length interferometry,” Opt. Eng. 43, 2400–2409(2004). [CrossRef]
  8. A. Y. Chang, M. D. DiRosa, D. F. Davidson, and R. K. Hanson, “Rapid tuning cw laser technique for measurements of gas velocity, temperature, pressure, density, and mass flux using NO,” Appl. Opt. 30, 3011–3022 (1991). [CrossRef] [PubMed]
  9. M. P. Arroyo and R. K. Hanson, “Absorption measurements of water-vapor concentration, temperature, and line-shape parameters using a tunable InGaAsP diode laser,” Appl. Opt. 32, 6104–6116 (1993). [CrossRef] [PubMed]
  10. D. S. Baer, R. K. Hanson, M. E. Newfield, and N. K. J. M. Gopaul, “Multiplexed diode-laser sensor system for simultaneous H2O, O2, and temperature measurements,” Opt. Lett. 19, 1900–1902 (1994). [CrossRef] [PubMed]
  11. J. Silver and D. J. Kane, “Diode laser measurements of concentration and temperature in microgravity combustion,” Meas. Sci. Technol. 10, 845–852 (1999). [CrossRef]
  12. J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Large-modulation-depth 2f spectroscopy with diode lasers for rapid temperature and species measurements in gases with blended and broadened spectra,” Appl. Opt. 43, 6500–6509 (2004). [CrossRef] [PubMed]
  13. X. Zhou, J. B. Jeffries, and R. K. Hanson, “Development of a fast temperature sensor for combustion gases using a single tunable diode laser,” Appl. Phys. B 81, 711–722 (2005). [CrossRef]
  14. J. Shao, L. Lathdavong, P. Kluczynski, S. Lundqvist, and O. Axner, “Methodology for temperature measurements in water vapor using wavelength-modulation tunable diode laser absorption spectrometry in the telecom C-band,” Appl. Phys. B 97, 727–748 (2009). [CrossRef]
  15. M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998). [CrossRef]
  16. V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, and H. Jaritz, “Simultaneous diode-laser-based in situ detection of multiple species and temperature in a gas-fired power plant,” Proc. Combust. Inst. 28, 423–430(2000). [CrossRef]
  17. S. T. Sanders, J. Wang, J. B. Jeffries, and R. K. Hanson, “Diode-laser absorption sensor for line-of-sight gas temperature distributions,” Appl. Opt. 40, 4404–4415 (2001). [CrossRef]
  18. H. Teichert, T. Fernholz, and V. Ebert, “Simultaneous in situ measurement of CO, H2O, and gas temperatures in a full-sized coal-fired power plant by near-infrared diode lasers,” Appl. Opt. 42, 2043–2051 (2003). [CrossRef] [PubMed]
  19. T. Hieta and M. Merimaa, “Spectroscopic measurement of air temperature,” Int. J. Thermophys. 31, 1710–1718 (2010). [CrossRef]
  20. V. Spagnolo, L. Dong, A. A. Kosterev, D. Thomazy, J. H. Doty III, and F. K. Tittel, “Modulation cancellation method for measurements of small temperature differences in a gas,” Opt. Lett. 36, 460–462 (2011). [CrossRef] [PubMed]
  21. F. Pollinger, T. Hieta, M. Vainio, N. R. Doloca, A. Abou-Zeid, K. Meiners-Hagen, and M. Merimaa, “Effective humidity in length measurements: comparison of three approaches,” Meas. Sci. Technol. (to be published).
  22. Further information on HITRAN available from www.hitran.com.
  23. D. J. Robichaud, J. T. Hodges, P. Maslowski, L. Y. Yeung, M. Okumura, C. E. Miller, and L. R. Brown, “High-accuracy transition frequencies for the O2A-band,” J. Mol. Spectrosc. 251, 27–37 (2008). [CrossRef]
  24. D. J. Robichaud, J. T. Hodges, L. R. Brown, D. Lisak, P. Maslowski, L. Y. Yeung, M. Okumura, and C. E. Miller, “Experimental intensity and lineshape parameters of the oxygen A-band using frequency-stabilized cavity ring-down spectroscopy,” J. Mol. Spectrosc. 248, 1–13 (2008). [CrossRef]
  25. L. R. Brown and C. Plymate, “Experimental line parameters of the oxygen A band at 760 nm,” J. Mol. Spectrosc. 199, 166–179 (2000). [CrossRef] [PubMed]
  26. Y. Liu, J. Lin, G. Huang, Y. Guo, and C. Duan, “Simple empirical analytical approximation to the Voigt profile,” J. Opt. Soc. Am. B 18, 666–672 (2001). [CrossRef]
  27. Q. V. Nguyen, R. W. Dibble, and T. Day, “High-resolution oxygen absorption spectrum obtained with an external-cavity continuously tunable diode laser,” Opt. Lett. 19, 2134–2136(1994). [CrossRef] [PubMed]
  28. V. G. Avetisov and P. Kauranen, “High-resolution absorption measurements by use of two-tone frequency-modulation spectroscopy with diode lasers,” Appl. Opt. 36, 4043–4054(1997). [CrossRef] [PubMed]
  29. P. Vogel and V. Ebert, “Near shot noise detection of oxygen in the A-band with vertical-cavity surface-emitting lasers,” Appl. Phys. B 72, 127–135 (2001). [CrossRef]
  30. L. Galatry, “Simultaneous effect of Doppler and foreign gas broadening on spectral lines,” Phys. Rev. 122, 1218–1223(1961). [CrossRef]
  31. P. L. Varghese and R. K. Hanson, “Collisional narrowing effects on spectral line shapes measured at high resolution,” Appl. Opt. 23, 2376–2385 (1984). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited