OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 31 — Nov. 1, 2011
  • pp: 6006–6010

Temperature-dependent index of refraction of monoclinic Ga 2 O 3 single crystal

Indranil Bhaumik, R. Bhatt, S. Ganesamoorthy, A. Saxena, A. K. Karnal, P. K. Gupta, A. K. Sinha, and S. K. Deb  »View Author Affiliations

Applied Optics, Vol. 50, Issue 31, pp. 6006-6010 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (528 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present temperature-dependent refractive index along crystallographic b [ 010 ] and a direction perpendicular to ( 100 ) -plane for monoclinic phase (β) Ga 2 O 3 single crystal grown by the optical floating zone technique. The experimental results are consistent with the theoretical result of Litimein et al. [1]. Also, the Sellmeier equation for wavelengths in the range of 0.4 1.55 μm is formulated at different temperatures in the range of 30 175 ° C . The thermal coefficient of refractive index in the above specified range is 10 5 / ° C .

© 2011 Optical Society of America

OCIS Codes
(160.4670) Materials : Optical materials
(160.4760) Materials : Optical properties

ToC Category:

Original Manuscript: August 15, 2011
Manuscript Accepted: September 15, 2011
Published: October 31, 2011

Indranil Bhaumik, R. Bhatt, S. Ganesamoorthy, A. Saxena, A. K. Karnal, P. K. Gupta, A. K. Sinha, and S. K. Deb, "Temperature-dependent index of refraction of monoclinic Ga2O3 single crystal," Appl. Opt. 50, 6006-6010 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Litimein, D. Rached, R. Khenata, and H. Baltache, “FPLAPW study of the structural, electronic, and optical properties of Ga2O3: Monoclinic and hexagonal phases,” J. Alloys Compd. 488, 148–156 (2009). [CrossRef]
  2. E. G. Víllora, K. Shimamura, Y. Yoshikawa, T. Ujiie, and K. Aoki, “Electrical conductivity and carrier concentration control in β-Ga2O3 by Si doping,” Appl. Phys. Lett. 92, 202120 (2008). [CrossRef]
  3. L. L. Liu, M. K. Li, D. Q. Yu, J. Zhang, H. Zhang, C. Qian, and Z. Yang, “Fabrication and characteristics of N-doped β-Ga2O3 nanowires,” Appl. Phys. A: Mater. Sci. Proc. 98, 831–835(2010). [CrossRef]
  4. E. Nogales, B. Méndez, J. Piqueras, and J. A. García, “Europium doped gallium oxide nanostructures for room temperature luminescent photonic devices,” Nanotechnology 20, 115201 (2009). [CrossRef] [PubMed]
  5. E. G. Víllora, K. Shimamura, K. Aoki, T. Ujiie, and K. Kitamura, “Epitaxial relationship between wurtzite GaN and β-Ga2O3,” Appl. Phys. Lett. 90, 234102 (2007). [CrossRef]
  6. H. He, R. Orlando, M. A. Blanco, R. Pandey, E. Amzallag, I. Baraille, and M. Rérat, “First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases,” Phys. Rev. B 74195123 (2006). [CrossRef]
  7. M. Rebien, W. Herion, M. Hong, J. P. Mannaerts, and M. Fleischer, “Optical properties of gallium oxide thin films,” Appl. Phys. Lett. 81, 250–252 (2002). [CrossRef]
  8. M. Passlack, E. F. Schubert, W. S. Hobson, M. Hong, N. Moriya, S. N. G. Chu, K. Konstadinidis, J. P. Mannaerts, M. L. Schnoes, and G. J. Zydzik, “Ga2O3 films for electronic and optoelectronic applications,” J. Appl. Phys. 77, 686–693 (1995). [CrossRef]
  9. Y. Tomm, P. Reiche, D. Klimm, and T. Fukuda, “Czochralski grown Ga2O3 crystals,” J. Cryst. Growth 220, 510–514 (2000). [CrossRef]
  10. E. G. Villora, K. Shimamura, Y. Yoshikawa, K. Aoki, and N. Ichinose, “Large-size β-Ga2O3 single crystals and wafers,” J. Cryst. Growth 270, 420–426 (2004). [CrossRef]
  11. A. K. Sinha, A. Sagdeo, P. Gupta, A. Kumar, M. N. Singh, R. K. Gupta, S. R. Kane, and S. K. Deb, “Commissioning of angle dispersive x-ray diffraction beamline on Indus-2,” 55th DAE Solid State Physics Symposium, 2010, Manipal, India, 26–30 December 2010, paper D48..
  12. H. Onodera, I. Awal, and J. Ikenoue, “Refractive-index measurement of bulk materials: prism coupling method,” Appl. Opt. 22, 1194–1197 (1983). [CrossRef] [PubMed]
  13. X. Ming, F. Lu, H. Liu, M. Chen, and L. Wang, “Formation and characterization of ZnO:Tm+ optical waveguides fabricated by Tm+ and O+ ion implantation,” J. Phys. D 42, 165303 (2009). [CrossRef]
  14. I. G. Kim, S. Takekawa, Y. Furukawa, M. Lee, and K. Kitamura, “Growth of LixTa1−xO3 single crystals and their optical properties,” J. Cryst. Growth 229, 243–247 (2001). [CrossRef]
  15. D. Zhang, Q. Yang, P. Hua, H. Liu, Y. Cui, L. Sun, Y. Xu, and E. Pun, “Sellmeier equation for doubly Er/Mg-doped congruent LiNbO3 crystals,” J. Opt. Soc. Am. B 26, 620–626 (2009). [CrossRef]
  16. G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984). [CrossRef]
  17. H. Y. Shen, X. L. Meng, G. Zhang, J. J. Qin, W. Liu, L. Zhu, C. H. Huang, L. X. Huang, and M. Wei, “Sellmeier’s equation and the expression of the thermal refractive-index coefficient for a Nd0.007Gd0.993VO4 crystal,” Appl. Opt. 43, 955–960(2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited