OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 31 — Nov. 1, 2011
  • pp: 6011–6018

Estimation of wavelength difference using scale adjustment in two-wavelength digital holographic interferometry

Hideki Funamizu and Yoshihisa Aizu  »View Author Affiliations


Applied Optics, Vol. 50, Issue 31, pp. 6011-6018 (2011)
http://dx.doi.org/10.1364/AO.50.006011


View Full Text Article

Enhanced HTML    Acrobat PDF (808 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a method for an estimation of wavelength difference using scale adjustment in two- wavelength digital holographic interferometry. To estimate wavelength difference, two holograms recorded with different wavelengths are reconstructed on the basis of the Fresnel diffraction integral, and pixel sizes in the reconstruction plane, which depend on the wavelength in recording hologram, are analyzed. In the analysis, a zero-padding method and an intensity correlation function are used to adjust pixel sizes in the reconstruction plane and then obtain a wavelength difference given by a difference between the pixel sizes. Theoretical predictions and experimental results are shown to indicate the usefulness of the proposed method in this paper.

© 2011 Optical Society of America

OCIS Codes
(070.2590) Fourier optics and signal processing : ABCD transforms
(120.2880) Instrumentation, measurement, and metrology : Holographic interferometry
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(120.6650) Instrumentation, measurement, and metrology : Surface measurements, figure
(140.2020) Lasers and laser optics : Diode lasers
(090.1995) Holography : Digital holography

ToC Category:
Holography

History
Original Manuscript: April 29, 2011
Revised Manuscript: July 12, 2011
Manuscript Accepted: July 19, 2011
Published: October 31, 2011

Citation
Hideki Funamizu and Yoshihisa Aizu, "Estimation of wavelength difference using scale adjustment in two-wavelength digital holographic interferometry," Appl. Opt. 50, 6011-6018 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-31-6011


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. Yamaguchi, T. Matsumura, and J. Kato, “Phase-shifting color digital holography,” Opt. Lett. 27, 1108–1110 (2002). [CrossRef]
  2. J. Kato, I. Yamaguchi, and T. Matsumura, “Multicolor digital holography with an achromatic phase shifter,” Opt. Lett. 27, 1403–1405 (2002). [CrossRef]
  3. B. Javidi, P. Ferraro, S. H. Hong, S. De Nicola, A. Finizio, D. Alfieri, and G. Pierattini, “Three-dimensional image fusion by use of multiwavelength digital holography,” Opt. Lett. 30, 144–146 (2005). [CrossRef] [PubMed]
  4. D. Alfieri, G. Coppola, S. De Nicola, P. Ferraro, A. Finizio, G. Pierattini, and B. Javidi, “Method for superposing reconstructed images from digital holograms of the same object recorded at different distance and wavelength,” Opt. Commun. 260, 113–116 (2006). [CrossRef]
  5. P. Ferraro, S. Grilli, L. Miccio, D. Alfieri, S. De Nicola, A. Finizio, and B. Javidi, “Full color 3-D imaging by digital holography and removal of chromatic aberrations,” J. Disp. Technol. 4, 97–100 (2008). [CrossRef]
  6. J. Zhao, H. Jiang, and J. Di, “Recording and reconstruction of a color holographic image by using digital lensless Fourier transform holography,” Opt. Express 16, 2514–2519 (2008). [CrossRef] [PubMed]
  7. S. Yeom, B. Javidi, P. Ferraro, D. Alfieri, S. De Nicola, and A. Finizio, “Three-dimensional color object visualization and recognition using multi-wavelength computational holography,” Opt. Express 15, 9394–9402 (2007). [CrossRef] [PubMed]
  8. T. Kakue, T. Tahara, K. Ito, Y. Shimozato, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel phase-shifting color digital holography using two phase shifts,” Appl. Opt. 48, H244–H250 (2009). [CrossRef] [PubMed]
  9. T. Kakue, M. Kuwamura, Y. Shimozato, T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Optical-path-length-shifting color digital holography,” Opt. Rev. 18, 180–183 (2011). [CrossRef]
  10. C. Wagner, S. Seebacher, W. Osten, and W. Jüptner, “Digital recording and numerical reconstruction of lensless Fourier holograms in optical metrology,” Appl. Opt. 38, 4812–4820(1999). [CrossRef]
  11. G. Pedrini, P. Fröning, H. J. Tiziani, and M. E. Gusev, “Pulsed digital holography for high-speed contouring that uses a two-wavelength method,” Appl. Opt. 38, 3460–3467 (1999). [CrossRef]
  12. C. Wagner, W. Osten, and S. Seebacher, “Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring,” Opt. Eng. 39, 79–85 (2000). [CrossRef]
  13. G. Pedrini, H. J. Tiziani, and M. E. Gusev, “Pulsed digital holographic interferometry with 694- and 347 nm wavelengths,” Appl. Opt. 39, 246–249 (2000). [CrossRef]
  14. N. Demoli, D. Vukicevic, and M. Torzynski, “Dynamic digital holographic interferometry with three wavelengths,” Opt. Express 11, 767–774 (2003). [CrossRef] [PubMed]
  15. T. Baumbach, E. Kolenović, V. Kebbel, and W. Jüptner, “Improvement of accuracy in digital holography by use of multiple holograms,” Appl. Opt. 45, 6077–6085 (2006). [CrossRef] [PubMed]
  16. I. Yamaguchi, T. Ida, M. Yokota, and K. Yamashita, “Surface shape measurement by phase-shifting digital holography with a wavelength shift,” Appl. Opt. 45, 7610–7616 (2006). [CrossRef] [PubMed]
  17. C. J. Mann, P. R. Bingham, V. C. Paquit, and K. W. Tobin, “Quantitative phase imaging by three-wavelength digital holography,” Opt. Express 16, 9753–9764 (2008). [CrossRef] [PubMed]
  18. S. Tamano, M. Otaka, and Y. Hayasaki, “Two-wavelength phase-shifting low-coherence digital holography,” Jpn. J. Appl. Phys. Part 1 47, 8844–8847 (2008). [CrossRef]
  19. A. Wada, M. Kato, and Y. Ishii, “Multiple-wavelength digital holographic interferometry using tunable laser diodes,” Appl. Opt. 47, 2053–2060 (2008). [CrossRef] [PubMed]
  20. A. Wada, M. Kato, and Y. Ishii, “Large step-height measurements using multiple-wavelength holographic interferometry with tunable laser diodes,” J. Opt. Soc. Am. A 25, 3013–3020(2008). [CrossRef]
  21. D. Carl, M. Fratz, M. Pfeifer, D. M. Giel, and H. Höfler, “Multiwavelength digital holography with autocalibration of phase shifts and artificial wavelengths,” Appl. Opt. 48, H1–H8(2009). [CrossRef] [PubMed]
  22. M. C. Potcoava and M. K. Kim, “Fingerprint biometry applications of digital holography and low-coherence interferography,” Appl. Opt. 48, H9–H15 (2009). [CrossRef] [PubMed]
  23. G. Sheoran, S. Dubey, A. Anand, D. S. Mehta, and C. Shakher, “Swept-source digital holography to reconstruct tomographic images,” Opt. Lett. 34, 1879–1881 (2009). [CrossRef] [PubMed]
  24. I. Yamaguchi and M. Yokota, “Speckle noise suppression in measurement by phase-shifting digital holography,” Opt. Eng. 48, 085602 (2009). [CrossRef]
  25. P. Tankam, Q. Song, M. Karray, J. Li, J. M. Desse, and P. Picart, “Real-time three-sensitivity measurements based on three-color digital Fresnel holographic interferometry,” Opt. Lett. 35, 2055–2057 (2010). [CrossRef] [PubMed]
  26. M. Yokota and N. Ishitobi, “Estimation of inner surface profile of a tube by two-wavelength phase-shifting digital holography,” Opt. Rev. 17, 166–170 (2010). [CrossRef]
  27. J. P. Ryle, D. Li, and J. T. Sheridan, “Dual wavelength digital holographic laplacian reconstruction,” Opt. Lett. 35, 3018–3020 (2010). [CrossRef] [PubMed]
  28. P. Ferraro, S. De Nicola, G. Coppola, A. Finizio, D. Alfieri, and G. Pierattini, “Controlling image size as a function of distance and wavelength in Fresnel-transform reconstruction of digital holograms,” Opt. Lett. 29, 854–856 (2004). [CrossRef] [PubMed]
  29. F. Zhang, I. Yamaguchi, and L. P. Yaroslavsky, “Algorithm for reconstruction of digital holograms with adjustable magnification,” Opt. Lett. 29, 1668–1670 (2004). [CrossRef] [PubMed]
  30. L. Yu and M. K. Kim, “Pixel resolution control in numerical reconstruction of digital holography,” Opt. Lett. 31, 897–899(2006). [CrossRef] [PubMed]
  31. M. K. Kim, “Wavelength-scanning digital interference holography for optical section imaging,” Opt. Lett. 24, 1693–1695(1999). [CrossRef]
  32. J. Gass, A. Dakoff, and M. K. Kim, “Phase imaging without 2π ambiguity by multiwavelength digital holography,” Opt. Lett. 28, 1141–1143 (2003). [CrossRef] [PubMed]
  33. S. De Nicola, A. Finizio, G. Pierattini, D. Alfieri, S. Grilli, L. Sansone, and P. Ferraro, “Recovering correct phase information in multiwavelength digital holographic microscopy by compensation for chromatic aberrations,” Opt. Lett. 30, 2706–2708 (2005). [CrossRef] [PubMed]
  34. D. Parshall and M. K. Kim, “Digital holographic microscopy with dual-wavelength phase unwrapping,” Appl. Opt. 45, 451–459 (2006). [CrossRef] [PubMed]
  35. J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15, 7231–7242(2007). [CrossRef] [PubMed]
  36. P. Ferraro, L. Miccio, S. Grilli, M. Paturzo, S. De Nicola, A. Finizio, R. Osellame, and P. Laporta, “Quantitative phase microscopy of microstructures with extended measurement range and correction of chromatic aberrations by multiwavelength digital holography,” Opt. Express 15, 14591–14600(2007). [CrossRef] [PubMed]
  37. T. M. Kreis and W. P. O. Jüptner, “Suppression of the dc term in digital holography,” Opt. Eng. 36, 2357–2360 (1997). [CrossRef]
  38. R. P. Muffoletto, J. M. Tyler, and J. E. Tohline, “Shifted Fresnel diffraction for computational holography,” Opt. Express 15, 5631–5640 (2007). [CrossRef] [PubMed]
  39. E. Kolenović, E. Kolenović, T. Kreis, and C. von Kopylow, and W. Jüptner, “Determination of large-scale out-of-plane displacements in digital Fourier holography,” Appl. Opt. 46, 3118–3125 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited