OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 31 — Nov. 1, 2011
  • pp: G1–G6

Direct observation of plasmonic index ellipsoids on a deep-subwavelength metallic grating

Liang Feng, Zhaowei Liu, and Yeshaiahu Fainman  »View Author Affiliations

Applied Optics, Vol. 50, Issue 31, pp. G1-G6 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (533 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We constructed a metallic grating on a deep-subwavelength scale and tested its plasmonic features in visible frequencies. The deep-subwavelength metallic grating effectively acts as an anisotropic homogeneous uniaxial form-birefringent metal, exhibiting different optical responses for polarizations along different optical axes. Therefore, this form-birefringent metal supports anisotropic surface plasmon polaritons that are characterized by directly imaging the generated plasmonic index ellipsoids in reciprocal space. The observed plasmonic index ellipsoids also show a rainbow effect, where different colors are dispersively distributed in reciprocal space.

© 2011 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(050.2555) Diffraction and gratings : Form birefringence
(310.6628) Thin films : Subwavelength structures, nanostructures

Original Manuscript: June 29, 2011
Manuscript Accepted: July 21, 2011
Published: September 9, 2011

Liang Feng, Zhaowei Liu, and Yeshaiahu Fainman, "Direct observation of plasmonic index ellipsoids on a deep-subwavelength metallic grating," Appl. Opt. 50, G1-G6 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, 2003).
  2. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999). [PubMed]
  3. I. Richter, P. C. Sun, F. Xu, and Y. Fainman, “Design consideration of form birefringent microstructures,” Appl. Opt. 34, 2421–2429 (1995). [CrossRef] [PubMed]
  4. R. C. Tyan, A. A. Salvekar, H. P. Chou, C. C. Cheng, A. Scherer, F. Xu, P. C. Sun, and Y. Fainman, “Design, fabrication and characterization of form-birefringent multilayer polarizing beam splitter,” J. Opt. Soc. Am. A 14, 1627–1636 (1997). [CrossRef]
  5. F. Xu, R. C. Tyan, P. C. Sun, Y. Fainman, C. C. Cheng, and A. Scherer, “Form-birefringent computer generated holograms,” Opt. Lett. 21, 1513–1515 (1996). [CrossRef] [PubMed]
  6. U. Levy and Y. Fainman, “Dispersion properties of inhomogeneous nanostructures,” J. Opt. Soc. Am. A 21, 881–889(2004). [CrossRef]
  7. U. Levy, C. H. Tsai, L. Pang, and Y. Fainman, “Engineering space-variant inhomogeneous media for polarization control,” Opt. Lett. 29, 1718–1720 (2004). [CrossRef] [PubMed]
  8. L. Pang, M. Nezhad, U. Levy, C. H. Tsai, and Y. Fainman, “Form-birefringence structure fabrication in GaAs by use of SU-8 as a dry-etching mask,” Appl. Opt. 44, 2377–2381(2005). [CrossRef] [PubMed]
  9. A. G. Zhukov and V. I. Smirnov, “Polarizing properties of wire gratings in the long wave infrared,” J. Appl. Spectrosc. 3, 304–307 (1965). [CrossRef]
  10. J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials,” Science 321, 930 (2008). [CrossRef] [PubMed]
  11. J. Elser, R. Wangberg, V. A. Podolskiy, and E. E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89, 261102 (2006). [CrossRef]
  12. S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).
  13. E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).
  14. L. Feng, Z. Liu, V. Lomakin, and Y. Fainman, “Form birefringence metal and its plasmonic anisotropy,” Appl. Phys. Lett. 96, 041112 (2010). [CrossRef]
  15. L. Feng, A. Mizrahi, S. Zamek, Z. Liu, V. Lomakin, and Y. Fainman, “Metamaterials for enhanced polarization conversion in plasmonic excitation,” ACS Nano 5, 5100–5106 (2011). [CrossRef] [PubMed]
  16. R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, “Surface-plasmon resonance effect in grating diffraction,” Phys. Rev. Lett. 21, 1530–1533 (1968). [CrossRef]
  17. Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” Proc. Natl. Acad. Sci. USA 108, 5169–5173 (2011). [CrossRef] [PubMed]
  18. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited