OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 31 — Nov. 1, 2011
  • pp: G104–G112

Dynamic switching of the chiral beam on the spiral plasmonic bull’s eye structure [Invited]

Seung-Yeol Lee, Il-Min Lee, Junghyun Park, Chi-Young Hwang, and Byoungho Lee  »View Author Affiliations

Applied Optics, Vol. 50, Issue 31, pp. G104-G112 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (887 KB) ISP Components
Browse Datasets: MIDAS Click for help

Full-Text PDF contains links to datasets. See ISP homepage for software requirements and other information.

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A polarization-dependent switchable plasmonic beaming structure composed of metallic hole surrounded by double spiral dielectric gratings is proposed. The main mechanism of the proposed structure is based on the angular momentum change of surface plasmon caused by the spiral geometry. On- and off-states of the proposed device are determined by the condition whether the rotating direction of incident polarization is the same as or opposite of the direction of the spiral rotations. Qualitative analytical expressions of the switching mechanisms and full-vectorial numerical results are presented.

© 2011 Optical Society of America

OCIS Codes
(230.5440) Optical devices : Polarization-selective devices
(240.6680) Optics at surfaces : Surface plasmons

Original Manuscript: July 1, 2011
Revised Manuscript: September 4, 2011
Manuscript Accepted: September 21, 2011
Published: October 25, 2011

Seung-Yeol Lee, Il-Min Lee, Junghyun Park, Chi-Young Hwang, and Byoungho Lee, "Dynamic switching of the chiral beam on the spiral plasmonic bull’s eye structure [Invited]," Appl. Opt. 50, G104-G112 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmon enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782(1998). [CrossRef]
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef] [PubMed]
  3. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998). [CrossRef]
  4. H. J. Lezec, A. Degiron, E. Davaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002). [CrossRef] [PubMed]
  5. S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90, 051113 (2007). [CrossRef]
  6. S. Kim, Y. Lim, H. Kim, J. Park, and B. Lee, “Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings,” Appl. Phys. Lett. 92, 013103 (2008). [CrossRef]
  7. S. Kim, Y. Lim, J. Park, and B. Lee, “Bundle beaming from multiple subwavelength slits surrounded by dielectric surface gratings,” J. Lightwave Technol. 28, 2023–2029 (2010). [CrossRef]
  8. H. Kim, J. Park, and B. Lee, “Tunable directional beaming from subwavelength metal slits with metal-dielectric composite surface gratings,” Opt. Lett. 34, 2569–2571 (2009). [CrossRef] [PubMed]
  9. D. Choi, Y. Lim, S. Roh, I.-M. Lee, J. Jung, and B. Lee, “Optical beam focusing with a metal slit array arranged along a semicircular surface and its optimization by genetic algorithm,” Appl. Opt. 49, A30–A35 (2010). [CrossRef] [PubMed]
  10. H. F. Shi, C. T. Wang, C. L. Du, X. G. Luo, X. C. Dong, and H. T. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13, 6815–6820 (2005). [CrossRef] [PubMed]
  11. W. M. Saj, “Light focusing on a stack of metal-insulator-metal waveguides sharp edge,” Opt. Express 17, 13615–13623(2009). [CrossRef] [PubMed]
  12. B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron. 34, 47–87 (2010). [CrossRef]
  13. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–932 (2010). [CrossRef] [PubMed]
  14. J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale: a Yagi-Uda nanoantenna in the optical domain,” Phys. Rev. B 76, 245403 (2007). [CrossRef]
  15. P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459, 410–413 (2009). [CrossRef] [PubMed]
  16. B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15, 209–221 (2009). [CrossRef]
  17. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010). [CrossRef] [PubMed]
  18. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009). [CrossRef] [PubMed]
  19. Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5, 1726–1729 (2005). [CrossRef] [PubMed]
  20. G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9, 2139–2143(2009). [CrossRef] [PubMed]
  21. T. Ohno and S. Miyanishi, “Study of surface plasmon chirality induced by Archimedes’ spiral grooves,” Opt. Express 14, 6285–6290 (2006). [CrossRef] [PubMed]
  22. H. Kim, J. Park, S.-W. Cho, S.-Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10, 529–536(2010). [CrossRef] [PubMed]
  23. Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101, 043903 (2008). [CrossRef] [PubMed]
  24. K. Y. Bliokh, Y. Gorodetski, V. Kleiner, and E. Hasman, “Coriolis effect in optics: unified geometric phase and spin-Hall effect,” Phys. Rev. Lett. 101, 030404 (2008). [CrossRef] [PubMed]
  25. A. Drezet, C. Genet, J.-Y. Laluet, and T. W. Ebbesen, “Optical chirality without optical activity: How surface plasmons give a twist to light,” Opt. Express 16, 12559–12570 (2008). [CrossRef] [PubMed]
  26. A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601 (2002). [CrossRef] [PubMed]
  27. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006). [CrossRef]
  28. J. H. Kang, D. S. Kim, and Q.-H. Park, “Local capacitor model for plasmonic electric field enhancement,” Phys. Rev. Lett. 102, 093906 (2009). [CrossRef] [PubMed]
  29. H. Kim and B. Lee, “Diffractive slit patterns for focusing surface plasmon polaritons,” Opt. Express 16, 8969–8980 (2008). [CrossRef] [PubMed]
  30. H. Kim, I.-M. Lee, and B. Lee, “Extended scattering-matrix method for efficient full parallel implementation of rigorous coupled-wave analysis,” J. Opt. Soc. Am. A 24, 2313–2327(2007). [CrossRef]
  31. H. Kim, J. Park, and B. Lee, “Finite-size nondiffracting beam from a subwavelength metallic hole with concentric dielectric gratings,” Appl. Opt. 48, G68–G72 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited