OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 31 — Nov. 1, 2011
  • pp: G27–G30

Subwavelength focusing using a hyperbolic medium with a single slit

Guixin Li, Jensen Li, and Kok Wai Cheah  »View Author Affiliations

Applied Optics, Vol. 50, Issue 31, pp. G27-G30 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (403 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A hyperbolic dispersion medium with a planar surface that can be used for subwavelength focusing is proposed. By combining the hyperbolic medium in a single slit with diffraction limit width, a laser beam could be focused to a subwavelength spot in the near field. Compared to a conventional superlens, the subdiffraction focusing in this work has higher optical throughput. Using a planar hyperbolic medium, which is actually alternating silver/dielectric multilayers, we showed that the focusing resolution of the designed device is down to λ / 5 using green light illumination (at a wavelength of 514.5 nm ).

© 2011 Optical Society of America

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(350.3618) Other areas of optics : Left-handed materials
(310.6628) Thin films : Subwavelength structures, nanostructures

Original Manuscript: May 12, 2011
Revised Manuscript: August 10, 2011
Manuscript Accepted: August 10, 2011
Published: September 21, 2011

Guixin Li, Jensen Li, and Kok Wai Cheah, "Subwavelength focusing using a hyperbolic medium with a single slit," Appl. Opt. 50, G27-G30 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991). [CrossRef] [PubMed]
  2. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782(1994). [CrossRef] [PubMed]
  3. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [CrossRef] [PubMed]
  4. V. G. Veselago, “Electrodynamics of substancies with simultaneously negative values of electric and magnetic permeabilities,” Sov. Phys. Usp. 10, 509–514 (1968). [CrossRef]
  5. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005). [CrossRef] [PubMed]
  6. D. O. S. Melville and R. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13, 2127–2134(2005). [CrossRef] [PubMed]
  7. G. X. Li, Jensen Li, H. L. Tam, C. T. Chan, and K. W. Cheah, “Near field imaging with resonant cavity lens,” Opt. Express 18, 2325–2331 (2010). [CrossRef] [PubMed]
  8. F. M. Huang, N. I. Zheludev, Y. Chen, and F. J. Garcia de Abajo, “Focusing of light by a nanohole array,” Appl. Phys. Lett. 90, 091119 (2007). [CrossRef]
  9. F. M. Huang and N. I. Zheludev, “Super-resolution without evanescent waves,” Nano Lett. 9, 1249–1254 (2009). [CrossRef] [PubMed]
  10. S. Thongrattanasiri and V. A. Podolskiy, “Hypergratings: nanophotonics in planar anisotropic metamaterials,” Opt. Lett. 34, 890–892 (2009). [CrossRef] [PubMed]
  11. Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7, 403–408 (2007). [CrossRef] [PubMed]
  12. A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B 74, 075103 (2006). [CrossRef]
  13. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247–8256 (2006). [CrossRef] [PubMed]
  14. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007). [CrossRef] [PubMed]
  15. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315, 1699–1701 (2007). [CrossRef] [PubMed]
  16. J. Zhao, Y. Feng, B. Zhu, and T. Jiang, “Sub-wavelength image manipulating through compensated anisotropic metamaterial prisms,” Opt. Express 16, 18057–18066 (2008). [CrossRef] [PubMed]
  17. A. V. Kildishev and V. M. Shalaev, “Engineering space for light via transformation optic,” Opt. Lett. 33, 43–45 (2008). [CrossRef]
  18. W. Wang, H. Xing, L. Fang, Y. Liu, J. Ma, L. Lin, C. Wang, and X. Luo, “Far-field imaging device: planar hyperlens with magnification using multi-layer metamaterial,” Opt. Express 16, 21142–21148 (2008). [CrossRef] [PubMed]
  19. Y. Xiong, Z. Liu, and X. Zhang, “A simple design of flat hyperlens for lithography and imaging with half-pitch resolution down to 20 nm,” Appl. Phys. Lett. 94, 203108 (2009). [CrossRef]
  20. G. X. Li, H. L. Tam, F. Y. Wang, and K. W. Cheah, “Superlens from complementary anisotropic metamaterials,” J. Appl. Phys. 102, 116101 (2007). [CrossRef]
  21. H. Liu, Shivanand, and K. J. Webb, “Subwavelength imaging with nonmagnetic anisotropic bilayers,” Opt. Lett. 34, 2243–2245 (2008). [CrossRef]
  22. B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74, 115116 (2006). [CrossRef]
  23. M. Born and E. Wolf, Principles of Optics (Pergamon, 1980).
  24. M. J. Weber, Handbook of Optical materials (CRC, 2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited