OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 31 — Nov. 1, 2011
  • pp: G37–G41

Largely extended light-emission shift of ZnSe nanostructures with temperature

Wallace C. H. Choy and Yee P. Leung  »View Author Affiliations

Applied Optics, Vol. 50, Issue 31, pp. G37-G41 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (480 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



ZnSe nanowires and nanobelts with zinc blende structure have been synthesized. The morphology and the growth mechanisms of the ZnSe nanostructures will be discussed. From the photoluminescence (PL) of the ZnSe nanostructures, it is interesting to note that red color emission with only a single peak at the photon energy of 2 eV at room temperature is obtained while the typical bandgap transition energy of ZnSe is 2.7 eV . When the temperature is reduced to 150 K , the peak wavelength shifts to 2.3 eV with yellowish emission and then blue emission with the peak at 2.7 eV at temperature less than 50 K . The overall wavelength shift of 700 meV is obtained as compared to the conventional ZnSe of about 100 meV (i.e., sevenfold extension). The ZnSe nanostructures with enhanced wavelength shift can potentially function as visible light temperature-indicator. The color change from red to yellowish and then to blue is large enough for the nanostructures to be used for temperature-sensing applications. The details of PL spectra of ZnSe at various temperatures are studied from (i) the spectral profile, (ii) the half-width half-maximum, and (iii) the peak photon energy of each of the emission centers. The results show that the simplified configuration coordinate model can be used to describe the emission spectra, and the frequency of the local vibrational mode of the emission centers is determined.

© 2011 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(160.6840) Materials : Thermo-optical materials
(230.0250) Optical devices : Optoelectronics
(250.5230) Optoelectronics : Photoluminescence
(160.4236) Materials : Nanomaterials
(250.0040) Optoelectronics : Detectors

Original Manuscript: June 27, 2011
Manuscript Accepted: August 12, 2011
Published: October 7, 2011

Wallace C. H. Choy and Yee P. Leung, "Largely extended light-emission shift of ZnSe nanostructures with temperature," Appl. Opt. 50, G37-G41 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Q. Li, X. Gong, C. Wang, J. Wang, K. Ip, and S. Hark, “Size-dependent periodically twinned ZnSe nanowires,” Adv. Mater. 16, 1436–1440 (2004). [CrossRef]
  2. S. K. Chan, Y. Cai, N. Wang, and I. K. Sou, “Control of growth orientation for epitaxially grown ZnSe nanowires,” Appl. Phys. Lett. 88, 013108 (2006). [CrossRef]
  3. X. T. Zhang, K. M. Ip, Z. Liu, Y. P. Leung, Q. Li, and S. K. Hark, “Structure and photoluminescence of ZnSe nanoribbons grown by metal organic chemical vapor deposition,” Appl. Phys. Lett. 84, 2641–2643 (2004). [CrossRef]
  4. Y. P. Leung, W. C. H. Choy, I. Markov, G. K. H. Pang, H. C. Ong, and T. I. Yuk, “Synthesis of wurtzite ZnSe nanorings by thermal evaporation,” Appl. Phys. Lett. 88, 183110(2006). [CrossRef]
  5. J. Hu, Y. Bando, and D. Golberg, “Sn-catalyzed thermal evaporation synthesis of tetrapod-branched ZnSe nanorod architectures,” Small 1, 95–99 (2004). [CrossRef]
  6. P. V. Kamat and B. Patrick, “Photophysics and photochemistry of quantized zinc oxide colloids,” J. Phys. Chem. 96, 6829–6834 (1992). [CrossRef]
  7. W. C. H. Choy, C. F. Guo, K. H. Pang, Y. P. Leung, G. Z. Wang, and K. W. Cheah, “ZnO nanorods on in situ synthesized ZnSe grains,” J. Nanosci. Nanotechnol. 6, 802–806 (2006). [CrossRef] [PubMed]
  8. R. Solanki, J. Huo, J. L. Freeouf, and B. Miner, “Atomic layer deposition of ZnSe/CdSe superlattice nanowires,” Appl. Phys. Lett. 81, 3864–3866 (2002). [CrossRef]
  9. J. Q. Hu, Y. Bando, J. H. Zhan, and D. Golberg, “Si/ZnS and Si/ZnSe core/shell nanocrystal structures,” Appl. Phys. Lett. 85, 3593–3596 (2004). [CrossRef]
  10. C. Wang, J. Wang, Q. Li, and G. C. Yi, “ZnSe-Si bi-coaxial nanowire heterostructures,” Adv. Funct. Mater. 15, 1471–1477(2005). [CrossRef]
  11. M. Sohel, X. Zhou, H. Lu, M. N. Perez-Paz, M. Tamargo, and M. Munoz, “Optical characterization and evaluation of the conduction band offset for ZnCdSe/ZnMgSe quantum wells grown on InP(001) by molecular-beam epitaxy,” J. Vac. Sci. Technol. 23, 1209–1211 (2005). [CrossRef]
  12. A. Bukaluk, M. Trzcinski, F. Firszt, S. Lezgowski, and H. Mezczynska, “Auger depth profile analysis and photoluminescence investigations of Zn1−xMgxSe alloys,” Surf. Sci. 507–510, 175–180 (2002). [CrossRef]
  13. J. H. Chang, J. S. Song, K. Godo, T. Yao, M. Y. Shen, and T. Goto, “ZnCdTe/ZnTe/ZnMgSeTe quantum-well structures for the application to pure-green light-emitting devices,” Appl. Phys. Lett. 78, 566–569 (2001). [CrossRef]
  14. X. Zhou, M. Munoz, M. C. Tamargo, and Y. C. Chen, “Optically pumped laser characteristics of blue Znx′Cdy′Mg1−x′−y′Se/ZnxCdyMg1−x−ySe single quantum well lasers grown on InP,” J. Appl. Phys. 95, 7–10 (2004). [CrossRef]
  15. M. Strassburg, Th. Deniozou, A. Hoffmann, R. Heitz, U. W. Pohl, D. Bimberg, D. Litvinov, A. Rosenauer, D. Gerthsen, S. Schwedhelm, K. Lischka, and D. Schikora, “Coexistence of planar and three-dimensional quantum dots in CdSe/ZnSe structures,” Appl. Phys. Lett. 76, 685–867(2000). [CrossRef]
  16. H. Jeon, J. Ding, W. Patterson, A. V. Nurmikko, W. Xie, D. C. Grille, M. Kobayashi, and R. L. Gunshor, “Blue-green injection laser diodes in (Zn,Cd)Se/ZnSe quantum wells,” Appl. Phys. Lett. 59, 3619–3621 (1991). [CrossRef]
  17. W. C. H. Choy and K. S. Chan, “Theoretical analysis of diffused quantum wells optical lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 9, 698–707 (2003), invited. [CrossRef]
  18. E. Marquardt, B. Opitz, M. Scholl, and M. Heuken, “Electroabsorption and light modulation with ZnSe/ZnSSe multiquantum wells grown by metalorganic vapor phase epitaxy,” J. Appl. Phys. 75, 8022–8026 (1994). [CrossRef]
  19. W. C. H. Choy, “Optical properties of InGaAs/InAlAs diffused double quantum wells,” J. Appl. Phys. 87, 2956–2966 (2000). [CrossRef]
  20. W. C. H. Choy, E. H. Li, and B. L. Weiss, “Asymmetric AlGaAs/GaAs double quantum wells phase modulator using surface acoustic wave,” IEEE J. Quantum Electron. 34, 1846–1853(1998). [CrossRef]
  21. See for example S. Fujita, H. Mimoto, and T. Noguchi, “Photoluminescence in ZnSe grown by liquid-phase epitaxy from Zn–Ga solution,” J. Appl. Phys. 50, 1079–1087 (1979). [CrossRef]
  22. W. Stutius, “Growth and doping of ZnSe and ZnSxSe1−x by organometallic chemical vapor deposition,” J. Cryst. Growth 59, 1–9 (1982). [CrossRef]
  23. Z. T. Zhang, Z. Liu, Y. P. Leung, Q. Li, and S. K. Hark, “Growth and luminescence of zinc-blende-structured ZnSe nanowires by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 83, 5533–5535 (2003). [CrossRef]
  24. Z. L. Wang, X. Y. Kong, and J. M. Zuo, “Induced growth of asymmetric nanocantilever arrays on polar surfaces,” Phys. Rev. Lett. 91, 185502 (2003). [CrossRef] [PubMed]
  25. C. C. Klick and J. J. Schulman, “Luminescence in Solids,” in Vol.  5 of Solid State Physics, F.Seitz and D.Turnbull, eds. (Academic, 1957), pp. 97–99. [CrossRef]
  26. S. Shionoya, T. Koda, K. Era, and H. Fujiwara, “Nature of luminescence transitions in ZnS crystals,” J. Phys. Soc. Jpn. 19, 1157–1167 (1964). [CrossRef]
  27. N. Sankar and K. Ramachandran, “On the thermal and optical properties of ZnSe and doped ZnSe crystals grown by PVT,” J. Cryst. Growth 247, 157–165 (2003). [CrossRef]
  28. M. Isshiki, T. Yoshida, K. Igaki, Y. Hayashi, and Y. Nakano, “Photoluminescence spectra of In-doped ZnSe single crystals,” J. Phys. C 19, 4375–4381 (1986). [CrossRef]
  29. V. V. Blinov, E. M. Gavrishchuk, V. G. Galstyan, V. S. Zimogorshii, I. A. Karetnikov, N. K. Morozova, and V. G. Plotnichenko, “Effect of oxygen doping on the IR transmission and cathodoluminescence of ZnSe,” Inorg. Mater. 37, 1228–1234 (2001). [CrossRef]
  30. P. Yu and M. Cardona, “Electronic properties of defects,” in Fundamentals of Semiconductors: Physics and Materials Properties (Springer, 2001), pp. 160–202.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited