OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 31 — Nov. 1, 2011
  • pp: G42–G46

Nanoscale ridge aperture as near-field transducer for heat-assisted magnetic recording

Nan Zhou, Edward C. Kinzel, and Xianfan Xu  »View Author Affiliations

Applied Optics, Vol. 50, Issue 31, pp. G42-G46 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (517 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Near-field transducer based on nanoscale optical antenna has been shown to generate high transmission and strongly localized optical spots well below the diffraction limit. In this paper, nanoscale ridge aperture antenna is considered as near-field transducer for heat-assisted magnetic recording. The spot size and transmission efficiency produced by ridge aperture are numerically studied. We show that the ridge apertures in a bowtie or half-bowtie shape are capable of generating small optical spots as well as elongated optical spots with desired aspect ratios for magnetic recording. The transmission efficiency can be improved by adding grooves around the apertures.

© 2011 Optical Society of America

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(210.4770) Optical data storage : Optical recording
(240.6680) Optics at surfaces : Surface plasmons

Original Manuscript: July 21, 2011
Manuscript Accepted: August 18, 2011
Published: October 7, 2011

Nan Zhou, Edward C. Kinzel, and Xianfan Xu, "Nanoscale ridge aperture as near-field transducer for heat-assisted magnetic recording," Appl. Opt. 50, G42-G46 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, “Heat Assisted Magnetic Recording,” Proc. IEEE 96, 1810–1835(2008). [CrossRef]
  2. W. A. Challener, C. Mihalcea, C. Peng, and K. Pelhos, “Miniature planar solid immersion mirror with focused spot less than a quarter wavelength,” Opt. Express 13, 7189–7197(2005). [CrossRef] [PubMed]
  3. C. Peng, C. Mihalcea, D. Buechel, W. A. Challener, and E. C. Gage, “Near field optical recording with a planar solid immersion mirror,” Appl. Phys. Lett. 87, 151105 (2005). [CrossRef]
  4. T. Rausch, C. Mihalcea, K. Pelhos, D. Karns, K. Mountfield, Y. A. Kubota, X. Wu, G. Ju, W. A. Challener, C. Peng, L. Li, Y.-T. Hsia, and E. C. Gage, “Near field heat assisted magnetic recording with a planar solid immersion lens,” Jpn. J. Appl. Phys., Part 1 45, 1314–1320 (2006). [CrossRef]
  5. R. E. Rottmayer, S. Batra, D. Buechel, W. A. Challener, J. Hohlfeld, Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. A. Seigler, D. Weller, and X. Yang, “Heat-assisted magnetic recording,” IEEE Trans. Magn. 42, 2417–2421 (2006). [CrossRef]
  6. W. A. Challener, T. W. McDaniel, C. D. Mihalcea, K. R. Mountfield, K. Pelhos, and I. K. Sendur, “Light delivery techniques for heat-assisted magnetic recordings,” Jpn. J. Appl. Phys. 42, 981–988 (2003). [CrossRef]
  7. W. A. Challener, E. Gage, A. Itagi, and C. Peng, “Optical transducers for near-field recording,” Jpn. J. Appl. Phys. 45, 6632–6642 (2006). [CrossRef]
  8. W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photon. 3, 220–224 (2009). [CrossRef]
  9. W. A. Challener, “Transducer for heat assisted magnetic recording,” U.S. patent 7,272,079 (18 September, 2007).
  10. L. Pan and D. B. Bogy, “Heat Assisted Magnetic Recording,” Nat. Photon. 3, 189–190 (2009). [CrossRef]
  11. HFSS 12.1, Ansoft LLC (2009).
  12. E. D. Palik, Handbook of optical constants of solid (Academic, SanDiego, 1998).
  13. E. X. Jin and X. Xu, “Finite-difference time-domain studies on optical transmission through planar nano-apertures in a metal film,” Jpn. J. Appl. Phys. 43, 407–417 (2004). [CrossRef]
  14. E. X. Jin and X. Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett. 88, 153110 (2006). [CrossRef]
  15. L. Wang and X. Xu, “High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging,” Appl. Phys. Lett. 90, 261105 (2007). [CrossRef]
  16. L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6, 361–364 (2006). [CrossRef] [PubMed]
  17. Y. Kim, S. Kim, H. Jung, E. Lee, and J. W. Hahn, “Plasmonic nano lithography with a high scan speed contact probe,” Opt. Express 17, 19476–19485 (2009). [CrossRef] [PubMed]
  18. S. M. V. Uppuluri, E. C. Kinzel, Y. Li, and X. Xu, “Parallel optical nanolithography using nanoscale bowtie aperture array,” Opt. Express 18, 7369–7375 (2010). [CrossRef] [PubMed]
  19. X. Shi, L. Hesselink, and R. L. Thornton, “Ultrahigh light transmission through a C-shaped nanoaperture,” Opt. Lett. 28, 1320 (2003). [CrossRef] [PubMed]
  20. T. E. Schlesinger, T. Rausch, A. Itagi, J. Zhu, J. A. Bain, and D. D. Stancil, “An integrated read/write head for hybrid recording,” Jpn. J. Appl. Phys. 41, 1821–1824 (2002). [CrossRef]
  21. K. Sendur, C. Peng, and W. Challener, “Near-field radiation from a ridge waveguide transducer in the vicinity of a solid immersion lens,” Phys. Rev. Lett. 94, 043901 (2005). [CrossRef] [PubMed]
  22. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002). [CrossRef] [PubMed]
  23. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003). [CrossRef] [PubMed]
  24. E. C. Kinzel, P. Srisungsitthisunti, Y. Li, A. Raman, and X. Xu, “Extraordinary transmission from high-gain nanoaperture antennas,” Appl. Phys. Lett. 96, 211116 (2010). [CrossRef]
  25. D. Wang, T. Yang, and K. B. Crozier, “Optical antennas integrated with concentric ring gratings: electric field enhancement and directional radiation,” Opt. Express 19, 2148–2157 (2011). [CrossRef] [PubMed]
  26. H. J. Lezec, and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12, 3629–3651(2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited