OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 31 — Nov. 1, 2011
  • pp: G47–G55

Scattering characterization of nanopigments in metallic coatings using hyperspectral optical imaging

José M. Medina and José A. Díaz  »View Author Affiliations

Applied Optics, Vol. 50, Issue 31, pp. G47-G55 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1239 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have determined the reflectance spectra of colored metallic coatings with high spatial resolution by using a hyperspectral imaging system. Reflectance spectra were converted to color coordinates revealing characteristic color maps in the color space. Principal-component analysis was applied to decorrelate the spatial variability of the reflectance spectra. We found that the eigenvalue spectra follow different power laws. The scaling exponent was analyzed by considering random-walk-type processes. An estimation of the Hurst exponent was done, suggesting anomalous diffusion from multiple light scattering. The results show that hyperspectral imaging combined with principal-component analysis provides a valuable method for nondestructive testing of complex turbid media.

© 2011 Optical Society of America

OCIS Codes
(120.4290) Instrumentation, measurement, and metrology : Nondestructive testing
(310.6860) Thin films : Thin films, optical properties
(330.1690) Vision, color, and visual optics : Color
(310.3915) Thin films : Metallic, opaque, and absorbing coatings
(110.4234) Imaging systems : Multispectral and hyperspectral imaging
(310.6188) Thin films : Spectral properties

Original Manuscript: July 11, 2011
Manuscript Accepted: August 7, 2011
Published: October 7, 2011

Virtual Issues
Vol. 7, Iss. 1 Virtual Journal for Biomedical Optics

José M. Medina and José A. Díaz, "Scattering characterization of nanopigments in metallic coatings using hyperspectral optical imaging," Appl. Opt. 50, G47-G55 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. W. Billmeyer and J. G. Davidson, “Color and appearance of metallized paint films. 1. Characterization,” J. Paint Technol. 46, 31–37 (1974).
  2. C. S. McCamy, “Observation and measurement of the appearance of metallic materials. 1. Macro appearance,” Color Res. Appl. 21, 292–304 (1996). [CrossRef]
  3. G. Pfaff and P. Reynders, “Angle-dependent optical effects deriving from submicron structures of films and pigments,” Chem. Rev. 99, 1963–1981 (1999). [CrossRef]
  4. S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71, 076401 (2008). [CrossRef]
  5. P. A. Lewis, Pigment Handbook, Properties and Economics, 2nd ed. (Wiley, 1988), Vol.  1.
  6. A. A. Tracton, Coatings Technology Handbook, 3rd ed. (Taylor & Francis Group, 2006). [CrossRef]
  7. H.-J. Streitberger and K.-F. Dössel, Automotive Paints and Coatings, 2nd ed. (Wiley-VCH, 2008). [CrossRef]
  8. C. S. McCamy, “Observation and measurement of the appearance of metallic materials. Part II. Micro appearance,” Color Res. Appl. 23, 362–373 (1998). [CrossRef]
  9. M. E. Nadal and E. A. Early, “Color measurements for pearlescent coatings,” Color Res. Appl. 29, 38–42 (2004). [CrossRef]
  10. E. Kirchner, G. J. van den Kieboom, L. Njo, R. Super, and R. Gottenbos, “Observation of visual texture of metallic and pearlescent materials,” Color Res. Appl. 32, 256–266 (2007). [CrossRef]
  11. N. Dekker, E. J. J. Kirchner, R. Super, G. J. van den Kieboom, and R. Gottenbos, “Total appearance differences for metallic and pearlescent materials: contributions from color and texture,” Color Res. Appl. 36, 4–14 (2011). [CrossRef]
  12. H. G. Völz, Industrial Color Testing, Fundamentals and Techniques, 2nd ed. (Wiley-VCH, 2001). [CrossRef]
  13. G. A. Klein, Industrial Color Physics, Springer Series in Optical Sciences (Springer, 2010). [CrossRef]
  14. R. Hunter and R. W. Harold, The Measurement of Appearance, 2nd ed. (Wiley, 1987).
  15. F. W. Billmeyer and E. C. Carter, “Color and appearance of metallized paint films. 2. Initial application of turbid-medium theory,” J. Coat. Technol. 48, 53–60 (1976).
  16. A. B. Murphy, “Modified Kubelka-Munk model for calculation of the reflectance of coatings with optically-rough surfaces,” J. Phys. D Appl. Phys. 39, 3571–3581 (2006). [CrossRef]
  17. “Standard terminology of appearance,” Rep. No. ASTM E284-95a (American Society for Testing and Materials, 1995).
  18. H. J. A. Saris, R. J. B. Gottenbos, and H. Vanhouwelingen, “Correlation between visual and instrumental color differecnes of metallic paint films,” Color Res. Appl. 15, 200–2051990). [CrossRef]
  19. “Farbtoleranzen für Automobillackierungen—Teil 2: Effektlackierungen,” Rep. No. DIN 6175-2 (Deutsches Institut für Normung e.V., 2001).
  20. “Standard practice for specifying the geometry of multiangle spectrophotometers,” Rep. No. ASTM E2175-01 (American Society for Testing and Materials, 2001).
  21. “Standard practice for multiangle color measurement of interference pigments,” Rep. No. ASTM E2539-08 (American Society for Testing and Materials, 2008).
  22. G. Baba and H. Arai, “Gonio-spectrophotometry of metal-flake and pearl-mica pigmented paint surfaces,” Proc. SPIE 4826, 79–86 (2003).. [CrossRef]
  23. A. F. H. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, “Imaging spectrometry for Earth remote sensing,” Science 228, 1147–1153 (1985). [CrossRef] [PubMed]
  24. N. Gat, “Imaging spectroscopy using tunable filters: A review,” Proc. SPIE 4056, 50–64 (2000). [CrossRef]
  25. J. Y. Hardeberg, F. Schmitt, and H. Brettel, “Multispectral color image capture using a liquid crystal tunable filter,” Opt. Eng. 41, 2532–2548 (2002). [CrossRef]
  26. H. F. Grahn and P. Geladi, Techniques and Applications of Hyperspectral Image Analysis (Wiley, 2007). [CrossRef]
  27. D. B. Kim, M. K. Seo, K. Y. Kim, and K. H. Lee, “Developing a multi-spectral HDR imaging module for a BRDF measurement system,” in Reflection, Scattering, and Diffraction from Surfaces II, Proceedings of SPIE-The International Society for Optical Engineering (SPIE, 2010). [PubMed]
  28. D. B. Kim, M. K. Seo, K. Y. Kim, and K. H. Lee, “Acquisition and representation of pearlescent paints using an image-based goniospectrophotometer,” Opt. Eng. 49, 043604 (2010). [CrossRef]
  29. J. M. Medina, S. Nascimento, and P. Vukusic, “Hyperspectral optical imaging of two different species of lepidoptera,” Nanoscale Res. Lett. 6, 1–5 (2011). [CrossRef]
  30. N. Ohta, “Estimating absorption-bands of component dyes by means of principal component analysis,” Anal. Chem. 45, 553–557 (1973). [CrossRef]
  31. I. T. Jollitffe, Principal Component Analysis, 2nd ed., Springer Series in Statistics (Springer-Verlag, 2002).
  32. D. Y. Tzeng and R. S. Berns, “A review of principal component analysis and its applications to color technology,” Color Res. Appl. 30, 84–98 (2005). [CrossRef]
  33. J. M. Medina, “Linear basis for metallic and iridescent colors,” Appl. Opt. 47, 5644–5653 (2008). [CrossRef] [PubMed]
  34. G. L. Rogers, “Multiple path analysis of reflectance from turbid media,” J. Opt. Soc. Am. A 25, 2879–2883 (2008). [CrossRef]
  35. P. Barthelemy, J. Bertolotti, and D. S. Wiersma, “A Levy flight for light,” Nature 453, 495–498 (2008). [CrossRef] [PubMed]
  36. J. B. Gao, Y. H. Cao, and J. M. Lee, “Principal component analysis of 1/f(alpha) noise,” Phys. Lett. A 314, 392–400 (2003). [CrossRef]
  37. P. J. B. Hancock, R. J. Baddeley, and L. S. Smith, “The principal components of natural images,” Netw. Comput. Neural Syst. 3, 61–70 (1992). [CrossRef]
  38. M. Kurylowicz, C. H. Yu, and R. Pomes, “Systematic study of anharmonic features in a principal component analysis of gramicidin A,” Biophys. J. 98, 386–395 (2010). [CrossRef] [PubMed]
  39. B. B. Mandelbrot, The Fractal Geometry of Nature (W. H. Freeman, 1982).
  40. J. M. Medina, L. M. Pereira, H. T. Correia, and S. Nascimento, “Hyperspectral optical imaging of human iris in vivo: characteristics of reflectance spectra,” J. Biomed. Opt. 16, 076001–076012 (2011). [CrossRef] [PubMed]
  41. G. E. Healey and R. Kondepudy, “Radiometric CCD camera calibration and noise estimation,” IEEE Trans. Pattern Anal. Machine Intell. 16, 267–276 (1994). [CrossRef]
  42. R. A. Yotter and D. M. Wilson, “A review of photodetectors for sensing light-emitting reporters in biological systems,” IEEE Sens. J. 3, 288–303 (2003). [CrossRef]
  43. E. Kirchner, “Film shrinkage and flake orientation,” Prog. Org. Coatings 65, 333–336 (2009). [CrossRef]
  44. G. Stolovitzky and K. R. Sreenivasan, “Kolmogorov refined similarity hypotheses for turbulence and general stochastic processes,” Rev. Mod. Phys. 66, 229–240 (1994). [CrossRef]
  45. G. Funes, D. Gulich, L. Zunino, D. G. Perez, and M. Garavaglia, “Behavior of the laser beam wandering variance with the turbulent path length,” Opt. Commun. 272, 476–479(2007). [CrossRef]
  46. J. Bertolotti, K. Vynck, L. Pattelli, P. Barthelemy, S. Lepri, and D. S. Wiersma, “Engineering disorder in superdiffusive Levy glasses,” Adv. Funct. Mater. 20, 965–968 (2010). [CrossRef]
  47. P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. London Ser. B 266, 1403–1411(1999). [CrossRef]
  48. P. Vukusic, R. Sambles, C. Lawrence, and G. Wakely, “Sculpted-multilayer optical effects in two species of Papilio butterfly,” Appl. Opt. 40, 1116–1125 (2001). [CrossRef]
  49. E. Kirchner and J. Houweling, “Measuring flake orientation for metallic coatings,” Prog. Org. Coatings 64, 287–293 (2009). [CrossRef]
  50. L. P. Sung, M. E. Nadal, M. E. McKnight, E. Marx, and B. Laurenti, “Optical reflectance of metallic coatings: Effect of aluminum flake orientation,” J. Coat. Technol. 74, 55–63(2002). [CrossRef]
  51. P. Barthelemy, J. Bertolotti, K. Vynck, S. Lepri, and D. S. Wiersma, “Role of quenching on superdiffusive transport in two-dimensional random media,” Phys. Rev. E 82, 011101(2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited