OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 31 — Nov. 1, 2011
  • pp: G7–G10

Polymer microfiber rings for high-sensitivity optical humidity sensing

Pan Wang, Fuxing Gu, Lei Zhang, and Limin Tong  »View Author Affiliations

Applied Optics, Vol. 50, Issue 31, pp. G7-G10 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (410 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate microrings assembled with polyacrylamide (PAM) microfibers for high-sensitivity relative humidity (RH) sensing. When exposed to moisture, the PAM microfiber absorbs water molecules and inflates monotonically with the increasing humidity, resulting in evident spectral shifts of the resonance peaks of the microring. By measuring the spectral shifts, the microring shows sensitivity as high as 490 pm / % RH and a response time of about 120 ms , within a dynamic range from 5% to 71% RH.

© 2011 Optical Society of America

OCIS Codes
(130.6010) Integrated optics : Sensors
(230.5750) Optical devices : Resonators
(130.5460) Integrated optics : Polymer waveguides

Original Manuscript: July 1, 2011
Manuscript Accepted: July 15, 2011
Published: September 9, 2011

Pan Wang, Fuxing Gu, Lei Zhang, and Limin Tong, "Polymer microfiber rings for high-sensitivity optical humidity sensing," Appl. Opt. 50, G7-G10 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. C. Bownass, J. S. Barton, and J. D. C. Jones, “Detection of high humidity by optical fibre sensing at telecommunications wavelengths,” Opt. Commun. 146, 90–94 (1998). [CrossRef]
  2. C. Bariain, I. R. Matias, F. J. Arregui, and M. Lopez-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sens. Actuators B 69, 127–131 (2000). [CrossRef]
  3. L. Zhang, F. X. Gu, J. Y. Lou, X. F. Yin, and L. M. Tong, “Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film,” Opt. Express 16, 13349–13353(2008). [CrossRef] [PubMed]
  4. F. X. Gu, L. Zhang, X. F. Yin, and L. M. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8, 2757–2761 (2008). [CrossRef] [PubMed]
  5. S. Otsuki, K. Adachi, and T. Taguchi, “A novel fiber-optic gas-sensing configuration using extremely curved optical fibers and an attempt for optical humidity detection,” Sens. Actuators B 53, 91–96 (1998). [CrossRef]
  6. B. D. Gupta and Ratnanjali, “A novel probe for a fiber optic humidity sensor,” Sens. Actuators B 80, 132–135 (2001). [CrossRef]
  7. S. K. Khijwania, K. L. Srinivasan, and J. P. Singh, “An evanescent-wave optical fiber relative humidity sensor with enhanced sensitivity,” Sens. Actuators B 104, 217–222(2005). [CrossRef]
  8. P. Kronenberg, P. K. Rastogi, P. Giaccari, and H. G. Limberger, “Relative humidity sensor with optical fiber Bragg gratings,” Opt. Lett. 27, 1385–1387 (2002). [CrossRef]
  9. T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Polymer-coated fiber Bragg grating for relative humidity sensing,” IEEE Sens. J. 5, 1082–1089 (2005). [CrossRef]
  10. M. Konstantaki, S. Pissadakis, S. Pispas, N. Madamopoulos, and N. A. Vainos, “Optical fiber long-period grating humidity sensor with poly(ethylene oxide)/cobalt chloride coating,” Appl. Opt. 45, 4567–4571 (2006). [CrossRef] [PubMed]
  11. Y. Liu, L. W. Wang, M. Zhang, D. S. Tu, X. H. Mao, and Y. B. Liao, “Long-period grating relative humidity sensor with hydrogel coating,” IEEE Photon. Technol. Lett. 19, 880–882(2007). [CrossRef]
  12. B. Bhola, P. Nosovitskiy, H. Mahalingam, and W. H. Steier, “Sol-gel-based integrated optical microring resonator humidity sensor,” IEEE Sens. J. 9, 740–747 (2009). [CrossRef]
  13. M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, “The microfiber loop resonator: theory, experiment, and application,” J. Lightwave Technol. 24, 242–250(2006). [CrossRef]
  14. F. Xu, V. Pruneri, V. Finazzi, and G. Brambilla, “An embedded optical nanowire loop resonator refractometric sensor,” Opt. Express 16, 1062–1067 (2008). [CrossRef] [PubMed]
  15. F. Xu and G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92, 101126 (2008). [CrossRef]
  16. X. Guo and L. M. Tong, “Supported microfiber loops for optical sensing,” Opt. Express 16, 14429–14434 (2008). [CrossRef] [PubMed]
  17. Y. Wu, Y. J. Rao, Y. H. Chen, and Y. Gong, “Miniature fiber optic temperature sensors based on silica/polymer microfiber knot resonators,” Opt. Express 17, 18142–18147 (2009). [CrossRef] [PubMed]
  18. Y. Wu, T. H. Zhang, Y. J. Rao, and Y. Gong, “Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators,” Sens. Actuators B 155, 258–263 (2011). [CrossRef]
  19. S. A. Harfenist, S. D. Cambron, E. W. Nelson, S. M. Berry, A. W. Isham, M. M. Crain, K. M. Walsh, R. S. Keynton, and R. W. Cohn, “Direct drawing of suspended filamentary micro-and nanostructures from liquid polymers,” Nano Lett. 4, 1931–1937 (2004). [CrossRef]
  20. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003). [CrossRef] [PubMed]
  21. R. A. Barry and P. Wiltzius, “Humidity-sensing inverse opal hydrogels,” Langmuir 22, 1369–1374 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited