OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 31 — Nov. 1, 2011
  • pp: G74–G79

Tuning of localized surface plasmon resonance of well-ordered Ag/Au bimetallic nanodot arrays by laser interference lithography and thermal annealing

Le Xu, Leng Seow Tan, and Ming Hui Hong  »View Author Affiliations

Applied Optics, Vol. 50, Issue 31, pp. G74-G79 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (635 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel hybrid approach to fabricate large-area well-ordered Ag/Au bimetallic nanodot arrays and its potential applications for biosensing is investigated. With the combination of laser interference lithography and the thermal annealing technique, Ag/Au bimetallic nanodots about 50 nm are formed inside periodic nanodisk arrays at a dimension of 530 nm on quartz substrates. Extinction spectra of the fabricated nanostructures show their localized surface plasmon resonance (LSPR) can be well controlled by Au concentration, which offers a means to flexibly tune the optical properties of the nanodot arrays. To study the sensitivity of the nanodot arrays, resonance wavelength changes per refractive index unit (RIU) are performed in different surrounding environments. This shows a 94% increase in peak shift per refractive index unit ( nanometers / RIU ) compared to the nanodot arrays formed only by thermal annealing. These results demonstrate a feasible approach to improve LSPR-based biosensor performance.

© 2011 Optical Society of America

OCIS Codes
(220.3740) Optical design and fabrication : Lithography
(240.6680) Optics at surfaces : Surface plasmons
(310.6628) Thin films : Subwavelength structures, nanostructures

Original Manuscript: July 1, 2011
Revised Manuscript: September 5, 2011
Manuscript Accepted: September 9, 2011
Published: October 14, 2011

Le Xu, Leng Seow Tan, and Ming Hui Hong, "Tuning of localized surface plasmon resonance of well-ordered Ag/Au bimetallic nanodot arrays by laser interference lithography and thermal annealing," Appl. Opt. 50, G74-G79 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. B. Zheng, L. Jensen, W. Yan, and T. R. Walker, B. K. Juluri, L. Jensen, and T. J. Huang, “Chemically tuning the localized surface plasmon resonances of gold nanostructure arrays,” J. Phys. Chem. C 113, 7019–7024 (2009). [CrossRef]
  2. K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111, 3828–3857 (2011). [CrossRef] [PubMed]
  3. A. D. Van McFarland and R. P. Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett. 3, 1057–1062 (2003). [CrossRef]
  4. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16, 21793–21800 (2008). [CrossRef] [PubMed]
  5. Y. Hou, J. Xu, P. Wang, and D. Yu, “Surface-enhanced Raman spectroscopy on coupled two-layer nanorings,” Appl. Phys. Lett. 96, 203107 (2010). [CrossRef]
  6. R. Esteban, R. Vogelgesang, J. Dorfmuller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8, 3155–3159 (2008). [CrossRef] [PubMed]
  7. V. K. S. Hsiao, Y. B. Zheng, B. K. Juluri, and T. J. Huang, “Light-driven plasmonic switches based on Au nanodisk arrays and photoresponsive liquid crystals,” Adv. Mater. 20, 3528–3532 (2008). [CrossRef]
  8. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008). [CrossRef] [PubMed]
  9. G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T. A. Klar, and J. Feldmann, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3, 935–938(2003). [CrossRef]
  10. A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124, 10596–10604(2002). [CrossRef] [PubMed]
  11. C. H. Liu, M. H. Hong, H. W. Cheung, F. Zhang, Z. Q. Huang, L. S. Tan, and T. S. A. Hor, “Bimetallic structure fabricated by laser interference lithography for tuning surface plasmon resonance,” Opt. Express 16, 10701–10709(2008). [CrossRef] [PubMed]
  12. M. L. Schatternburg, R. J. Aucoin, and R. C. Fleming, “Optically matched trilevel resist process for nanostructure fabrication,” J. Vac. Sci. Technol. B 13, 3007–3011(1995). [CrossRef]
  13. D. R. Lide, Handbook of Chemistry and Physics, 87th ed. (CRC Press, 2006).
  14. H. Krishna, N. Shirato, S. Yadavali, R. Sachan, J. Strader, and R. Kalyanaraman, “Self-organization of nanoscle multilayer liquid metal films: experiment and theory,” ACS Nano 5, 470–476 (2011). [CrossRef]
  15. N. E. Motl, E. Ewusi-Ann, I. T. Sines, L. Jensen, and R. E. Schaak, “Au-Cu alloy nanoparticles with tunable compositions and plasmonic properties: experimental determination of composition and correlation with theory,” J. Phys. Chem. C 114, 19263–19269 (2010). [CrossRef]
  16. K. L. Kelly and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003). [CrossRef]
  17. T. Sannomiya, P. K. Sahoo, D. I. Mahcicek, H. H. Solak, C. Hafner, D. Grieshaber, and J. Voros, “Biosensing by densely packed and optically coupled plasmonic particle arrays,” Small 5, 1889–1896 (2009). [CrossRef] [PubMed]
  18. R. K. Roy, S. K. Mandal, and A. K. Pal, “Effect of interfacial alloying on the surface plasmon resonance of nanocrystalline Au-Ag multilayer thin films,” Eur. Phys. J. B 33, 109–114(2003). [CrossRef]
  19. Y. B. Zheng, B. K. Juluri, X. Mao, T. R. Walker, and T. J. Huang, “Systematic investigation of localized surface plasmon resonance of long range ordered Au nanodisk arrays,” J. Appl. Phys. 103, 014308 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited