OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 31 — Nov. 1, 2011
  • pp: G86–G90

Two-dimensional subwavelength imaging from a hemispherical hyperlens

Dongdong Li, Dao Hua Zhang, Changchun Yan, and Yueke Wang  »View Author Affiliations

Applied Optics, Vol. 50, Issue 31, pp. G86-G90 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (406 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a hemispherical-shaped hyperlens with subwavelength resolution less than 100 nm . Simulations with the finite-element method show that with a 365 nm illumination, the hemispherical hyperlens isotropically magnifies the image along the radial direction. Under linearly polarized light, portions of an object can be resolved. A complete image of the object can be generated by superposing sufficient number of images obtained with incident light in different polarization directions. Such a hyperlens has great potential for realization of nanoscale imaging.

© 2011 Optical Society of America

OCIS Codes
(100.6640) Image processing : Superresolution
(160.3918) Materials : Metamaterials

Original Manuscript: June 22, 2011
Revised Manuscript: September 15, 2011
Manuscript Accepted: September 15, 2011
Published: October 17, 2011

Dongdong Li, Dao Hua Zhang, Changchun Yan, and Yueke Wang, "Two-dimensional subwavelength imaging from a hemispherical hyperlens," Appl. Opt. 50, G86-G90 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Abbe, “Beiträge zur Theorie des Mikroskops und der Mikroskopischen Wahrnehmung,” Archiv f. Mikrosk. Anatomie 9, 413–418 (1873). [CrossRef]
  2. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier—optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991). [CrossRef] [PubMed]
  3. J. B. Pendry and S. A. Ramakrishna, “Focusing light using negative refraction,” J. Phys. 15, 6345–6364 (2003). [CrossRef]
  4. V. Podolskiy and E. E. Narimanov, “Near-sighted superlens,” Opt. Lett. 30, 75–77 (2005). [CrossRef] [PubMed]
  5. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247–8256 (2006). [CrossRef] [PubMed]
  6. A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B 74, 075103 (2006). [CrossRef]
  7. I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315, 1699–1701(2007). [CrossRef] [PubMed]
  8. C. C. Yan, D. H. Zhang, and D. D. Li, “Spherical metallic nanoparticle arrays for super-resolution imaging,” J. Appl. Phys. 109, 063105 (2011). [CrossRef]
  9. C. C. Yan, D. H. Zhang, Y. Zhang, D. D. Li, and M. A. Fiddy, “Metal–dielectric composite metamaterials for beam splitting and deep sub-wavelength resolution in the far field for visible wavelengths,” Opt. Express 18, 14794–14801 (2010). [CrossRef] [PubMed]
  10. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [CrossRef] [PubMed]
  11. J. T. Shen and P. M. Platzman, “Near-field imaging with negative dielectric constant lenses,” Appl. Phys. Lett. 80, 3286–3288 (2002). [CrossRef]
  12. N. Lagarkov and V. N. Kissel, “Near-perfect imaging in a focusing system based on a left-handed-material plate,” Phys. Rev. Lett. 92, 077401 (2004). [CrossRef] [PubMed]
  13. S. A. Ramakrishna, J. B. Pendry, D. Schurig, D. R. Smith, and S. Schultz, “The asymmetric lossy near-perfect lens,” J. Mod. Opt. 49, 1747–1762 (2002). [CrossRef]
  14. S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photon. 3, 388–394(2009). [CrossRef]
  15. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub–diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005). [CrossRef] [PubMed]
  16. X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7, 435–441 (2008). [CrossRef] [PubMed]
  17. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Semiclassical theory of the hyperlens,” J. Opt. Soc. Am. A 24, A52–A59(2007). [CrossRef]
  18. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686–1687 (2007). [CrossRef] [PubMed]
  19. H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, “Development of optical hyperlens for imaging below the diffraction limit,” Opt. Express 15, 15886–15891 (2007). [CrossRef] [PubMed]
  20. J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1, 143 (2010). [CrossRef]
  21. D. R. Lide, Handbook of Chemistry and Physics (CRC Press, 2002).
  22. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  23. M. J. Weber, Handbook of Optical Materials (CRC Press, 2003).
  24. E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited