OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 31 — Nov. 1, 2011
  • pp: G91–G97

Disorder effect in the transmission spectra of a noncompact single layer of dielectric spheres derived from microwave spectroscopy

Angel Andueza, Tom Smet, Paola Morales, and Joaquín Sevilla  »View Author Affiliations


Applied Optics, Vol. 50, Issue 31, pp. G91-G97 (2011)
http://dx.doi.org/10.1364/AO.50.000G91


View Full Text Article

Enhanced HTML    Acrobat PDF (564 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Single layers of dielectric spheres are an interesting system to study from the fundamental and applied points of view. In this paper we present a systematic study of the influence of structural disorder on the transmission spectra of arrangements of spheres of different compactness. Glass sphere ( ε = 7 ) planes were built and their transmission spectra in the microwave range measured. Transmission behavior of this system is highly tolerant to disorder. Even in completely disordered arrangements, there is a highly rejected band with the dips of the spectrum observable. These results suggest that the collective modes of the sphere planes are formed by weakly coupled Mie modes of the individual spheres, and this coupling is governed by the average distance among the spheres. Disorder tolerance allows simpler fabrication procedures where the position of the spheres does not need to be precisely controlled.

© 2011 Optical Society of America

OCIS Codes
(260.5740) Physical optics : Resonance
(300.6370) Spectroscopy : Spectroscopy, microwave
(160.5298) Materials : Photonic crystals

History
Original Manuscript: July 5, 2011
Revised Manuscript: September 19, 2011
Manuscript Accepted: October 3, 2011
Published: October 20, 2011

Citation
Angel Andueza, Tom Smet, Paola Morales, and Joaquín Sevilla, "Disorder effect in the transmission spectra of a noncompact single layer of dielectric spheres derived from microwave spectroscopy," Appl. Opt. 50, G91-G97 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-31-G91


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062(1987). [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489(1987). [CrossRef] [PubMed]
  3. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 1995).
  4. T. Kondo, S. Yamaguti, M. Hangyo, K. Yamamoto, Y. Segawa, and K. Ohtaka, “Refractive index dependence of the transmission properties for a photonic crystal array of dielectric spheres,” Phys. Rev. B 70, 235113 (2004). [CrossRef]
  5. T. Kondo, M. Hangyo, S. Yamaguchi, S. Yano, Y. Segawa, and K. Ohtaka, “Transmission characteristics of a two-dimensional photonic crystal array of dielectric spheres using subterahertz time domain spectroscopy,” Phys. Rev. B 66, 331111 (2002). [CrossRef]
  6. Y. Kurokawa, Y. Jimba, and H. Miyazaki, “Internal electric-field distribution of a monolayer of periodically arrayed dielectric spheres,” Phys. Rev. B 70, 155107 (2004). [CrossRef]
  7. Y. Kurokawa, H. Miyazaki, and Y. Jimba, “Optical band structure and near-field intensity of a periodically arrayed monolayer of dielectric spheres on dielectric substrate of finite thickness,” Phys. Rev. B 69, 155117 (2004). [CrossRef]
  8. Y. Kurokawa, H. Miyazaki, and Y. Jimba, “Light scattering from a monolayer of periodically arrayed dielectric spheres on dielectric substrates,” Phys. Rev. B 65, 2011021 (2002). [CrossRef]
  9. Y. Kurokawa, H. Miyazaki, H. T. Miyazaki, and Y. Jimba, “Effect of a semi-infinite substrate on the internal electric field intensity distribution of a monolayer of periodically arrayed dielectric spheres,” J. Phys. Soc. Jpn. 74, 924–929 (2005). [CrossRef]
  10. H. T. Miyazaki, H. Miyazaki, K. Ohtaka, and T. Sato, “Photonic band in two-dimensional lattices of micrometer-sized spheres mechanically arranged under a scanning electron microscope,” J. Appl. Phys. 87, 7152–7158 (2000). [CrossRef]
  11. K. Ohtaka, “Scattering theory of low-energy photon diffraction,” J. Phys. C 13, 667–680 (1980). [CrossRef]
  12. K. Ohtaka, “Energy band of photons and low-energy photon diffraction,” Phys. Rev. B 19, 5057–5067 (1979). [CrossRef]
  13. K. Ohtaka and M. Inoue, “Light scattering from macroscopic spherical bodies. I. Integrated density of states of transverse electromagnetic fields,” Phys. Rev. B 25, 677–688 (1982). [CrossRef]
  14. K. Ohtaka, Y. Suda, S. Nagano, T. Ueta, A. Imada, T. Koda, J. S. Bae, K. Mizuno, S. Yano, and Y. Segawa, “Photonic band effects in a two-dimensional array of dielectric spheres in the millimeter-wave region,” Phys. Rev. B 61, 5267–5279(2000). [CrossRef]
  15. K. Ohtaka and Y. Tanabe, “Photonic band using vector spherical waves. I. Various properties of Bloch electric fields and heavy photons,” J. Phys. Soc. Jpn. 65, 2265–2275 (1996). [CrossRef]
  16. K. Ohtaka and Y. Tanabe, “Photonic bands using vector spherical waves. II. Reflectivity, coherence and local field,” J. Phys. Soc. Jpn. 65, 2276–2284 (1996). [CrossRef]
  17. K. Ohtaka and Y. Tanabe, “Photonic bands using vector spherical waves. III. Group-theoretical treatment,” J. Phys. Soc. Jpn. 65, 2670–2684 (1996). [CrossRef]
  18. R. Sainidou, N. Stefanou, I. E. Psarobas, and A. Modinos, “Scattering of elastic waves by a periodic monolayer of spheres,” Phys. Rev. B 66, 024303 (2002). [CrossRef]
  19. A. Andueza, R. Echeverría, and J. Sevilla, “Evolution of the electromagnetic modes of a single layer of dielectric spheres with compactness,” J. Appl. Phys. 104, 043103 (2008). [CrossRef]
  20. A. Andueza and J. Sevilla, “Non compact single-layers of dielectric spheres electromagnetic behaviour,” Opt. Quantum Electron. 39, 311–320 (2007). [CrossRef]
  21. A. Andueza, R. Echeverría, P. Morales, and J. Sevilla, “Geometry influence on the transmission spectra of dielectric single layers of spheres with different compactness,” J. Appl. Phys. 107, 124902 (2010). [CrossRef] [PubMed]
  22. K. Vynck, K. Cassagne, and E. Centeno, “Superlattice for photonic band gap opening in monolayers of dielectric spheres,” Opt. Express 14, 6668–6674 (2006). [CrossRef] [PubMed]
  23. F. Jonsson, C. M. S. Torres, J. Seekamp, M. Schniedergers, A. Tiedemann, J. Ye, and R. Zentel, “Artificially inscribed defects in opal photonic crystals,” Microelectron. Eng. 78–79, 429–435 (2005). [CrossRef]
  24. W. Cai and R. Piestun, “Patterning of silica microsphere monolayers with focused femtosecond laser pulses,” Appl. Phys. Lett. 88, 111112 (2006). [CrossRef]
  25. J. Sun, Y. Li, H. Dong, P. Zhan, C. Tang, M. Zhu, and Z. Wang, “Fabrication and light-transmission properties of monolayer square symmetric colloidal crystals via controlled convective self-assembly on 1D grooves,” Adv. Mater. 20, 123–128 (2008). [CrossRef]
  26. S. Matsushita and M. Shimomura, “Light-propagation patterns in freestanding two-dimensional colloidal crystals,” Colloids Surf. A 284–285, 315–319 (2006). [CrossRef]
  27. E. Mine, M. Hirose, D. Nagao, Y. Kobayashi, and M. Konno, “Synthesis of submicrometer-sized titania spherical particles with a sol-gel method and their application to colloidal photonic crystals,” J. Colloid Interface Sci. 291, 162–168 (2005). [CrossRef] [PubMed]
  28. Z. Y. Koide, K. Fujisawa, and M. Nakane, “Preparation of non-contact ordered array of polystyrene colloidal particles by using a metallic thin film of fused hemispheres,” Colloids Surf. A 330, 108–111 (2008). [CrossRef]
  29. I. V. Ponomarev, M. Schwab, G. Dasbach, M. Bayer, T. L. Reinecke, J. P. Reithmaier, and A. Forchel, “Influence of geometric disorder on the band structure of a photonic crystal: Experiment and theory,” Phys. Rev. B 75, 205434(2007). [CrossRef]
  30. T. Prasad, V. L. Colvin, and D. M. Mittleman, “The effect of structural disorder on guided resonances in photonic crystal slabs studied with terahertz time-domain spectroscopy,” Opt. Express 15, 16954–16965 (2007). [CrossRef] [PubMed]
  31. M. Skorobogatiy, G. Bégin, and A. Talneau, “Statistical analysis of geometrical imperfections from the images of 2D photonic crystals,” Opt. Express 13, 2487–2502 (2005). [CrossRef] [PubMed]
  32. H. Y. Ryu, J. K. Hwang, and Y. H. Lee, “Effect of size nonuniformities on the band gap of two-dimensional photonic crystals,” Phys. Rev. B 59, 5463–5469 (1999). [CrossRef]
  33. A. A. Asatryan, P. A. Robinson, L. C. Botten, R. C. McPhedran, N. A. Nicorovici, and C. M. de Sterke, “Effects of disorder on wave propagation in two-dimensional photonic crystals,” Phys. Rev. E 60, 6118–6127 (1999). [CrossRef]
  34. M. A. Kaliteevski, J. M. Martinez, D. Cassagne, and J. P. Albert, “Disorder-induced modification of the attenuation of light in a two-dimensional photonic crystal with complete band gap,” Phys. Status Solidi A 195, 612–617 (2003). [CrossRef]
  35. L. L. Lima, M. A. R. C. Alencar, D. P. Caetano, D. R. Solli, and J. M. Hickmann, “The effect of disorder on two-dimensional photonic crystal waveguides,” J. Appl. Phys. 103, 123102(2008). [CrossRef]
  36. T. N. Langtry, A. A. Asatryan, L. C. Botten, C. M. de Sterke, R. C. McPhedran, and P. A. Robinson, “Effects of disorder in two-dimensional photonic crystal waveguides,” Phys. Rev. E 68, 026611 (2003). [CrossRef]
  37. R. Meisels and F. Kuchar, “Density-of-states and wave propagation in two-dimensional photonic crystals with positional disorder,” J. Opt. A 9, S396–S402 (2007). [CrossRef]
  38. B. Wang, Y. Jin, and S. He, “Effects of disorder in a photonic crystal on the extraction efficiency of a light-emitting diode,” J. Appl. Phys. 106, 014508 (2009). [CrossRef]
  39. W. R. Frei and H. T. Johnson, “Finite-element analysis of disorder effects in photonic crystals,” Phys. Rev. B 70, 165116(2004). [CrossRef]
  40. D. M. Beggs, M. A. Kaliteevski, S. Brand, R. A. Abram, D. Cassagne, and J. P. Albert, “Disorder induced modification of reflection and transmission spectra of a two-dimensional photonic crystal with an incomplete band-gap,” J. Phys. Condens. Matter 17, 4049–4055 (2005). [CrossRef]
  41. L. A. Dorado and R. A. Depine, “Modeling of disorder effects and optical extinction in three-dimensional photonic crystals,” Phys. Rev. B 79, 045124 (2009). [CrossRef]
  42. B. Auguié and W. L. Barnes, “Diffractive coupling in gold nanoparticle arrays and the effect of disorder,” Opt. Lett. 34, 401–403 (2009). [CrossRef] [PubMed]
  43. S. H. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Theoretical investigation of fabrication-related disorder on the properties of photonic crystals,” J. Appl. Phys. 78, 1415–1418 (1995). [CrossRef]
  44. R. Rengarajan, D. Mittleman, C. Rich, and V. Colvin, “Effect of disorder on the optical properties of colloidal crystals,” Phys. Rev. E 71, 016615 (2005). [CrossRef]
  45. M. M. Sigalas, C. M. Soukoulis, C. T. Chan, R. Biswas, and K. M. Ho, “Effect of disorder on photonic band gaps,” Phys. Rev. B 59, 12767–12770 (1999). [CrossRef]
  46. A. V. Baryshev, V. A. Kosobukin, K. B. Samusev, D. E. Usvyat, and M. F. Limonov, “Light diffraction from opal-based photonic crystals with growth-induced disorder: experiment and theory,” Phys. Rev. B 73, 205118 (2006). [CrossRef]
  47. C. Rockstuhl and F. Lederer, “Suppression of the local density of states in a medium made of randomly arranged dielectric spheres,” Phys. Rev. B 79, 132202 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited