OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 32 — Nov. 10, 2011
  • pp: 6033–6038

Detection and determination of manganese concentration in water using a fiber Bragg grating coupled with nanotechnology

Jyoti F. Akki, Anandkumar S. Lalasangi, Konduri G. Manohar, Prasad Raikar, Talabatulla Srinivas, and Uday S. Raikar  »View Author Affiliations


Applied Optics, Vol. 50, Issue 32, pp. 6033-6038 (2011)
http://dx.doi.org/10.1364/AO.50.006033


View Full Text Article

Enhanced HTML    Acrobat PDF (484 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Through this paper we experimentally demonstrate the fabrication of a fiber Bragg grating (FBG) chemical sensor to detect and determine the manganese concentration in water and compare our results with sophisticated spectroscopic methods, such as atomic absorption spectrometry and the inductively coupled plasma method. Here we propose a simple method to develop a thin layer of gold nanoparticles above the etched grating region to enhance the sensitivity of the reflected spectrum of the FBG. By doing so, we achieve a sensitivity of 1.26 nm / parts per million in determining the trace level of Mn in water. Proper reagents are used to detect manganese in water.

© 2011 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(230.0250) Optical devices : Optoelectronics
(230.1150) Optical devices : All-optical devices
(230.2285) Optical devices : Fiber devices and optical amplifiers
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: May 31, 2011
Revised Manuscript: August 20, 2011
Manuscript Accepted: September 8, 2011
Published: November 2, 2011

Citation
Jyoti F. Akki, Anandkumar S. Lalasangi, Konduri G. Manohar, Prasad Raikar, Talabatulla Srinivas, and Uday S. Raikar, "Detection and determination of manganese concentration in water using a fiber Bragg grating coupled with nanotechnology," Appl. Opt. 50, 6033-6038 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-32-6033


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. APEC Water Systems, “FreeDrinkingWater.com,” http://www.freedrinkingwater.com/water_quality/chemical/water-problems-manganese.htm.
  2. M. M. Canavan, S. Cobb, and C. Srinker, “Chronic manganese poisoning,” Arch. Neurol. Psychiatry 32, 501–512 (1934).
  3. D. G. Cook, S. Fahn, and K. A. Brait, “Chronic manganese intoxication,” Arch. Neurol. 30, 59–64 (1974). [CrossRef] [PubMed]
  4. P. He, D. H. Liu, and G. Q. Zhang, “Effects of high-level manganese sewage irrigation on children’s neurobehavior,” Chin. J. Prev. Med. 28, 216–218 (1994).
  5. G. Zhang, D. Liu, and P. He, “Effects of manganese on learning abilities in school children,” Chin. J. Prev. Med. 29, 156–158(1995).
  6. X. Kondakis, N. Makris, M. Leotsinidis, M. Prinou, and T. Papapetroplous, “Possible health effects of high manganese concentration in drinking water,” Arch. Environ. Health 44, 175–178 (1989). [CrossRef] [PubMed]
  7. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997). [CrossRef]
  8. T. A. Berkoff and A. D. Kersey, “Experimental demonstration of fiber Bragg grating accelerometer,” IEEE Photon. Technol. Lett. 8, 1677–1679 (1996). [CrossRef]
  9. X. Dong, Y. Liu, Z. Liu, and X. Dong, “Simultaneous displacement and temperature measurement with cantilever based fiber Bragg grating sensor,” Opt. Commun. 192, 213–217 (2001). [CrossRef]
  10. M. G. Xu, L. Reekie, Y. T. Chow, and J. P. Dakin, “Optical in fiber grating high pressure sensor,” Electron. Lett. 29, 398–399 (1993). [CrossRef]
  11. N. Takahashi, A. Hirose, and S. Takahashi, “Underwater acoustic sensor with fiber Bragg grating,” Opt. Rev. 4, 691–694(1997). [CrossRef]
  12. B. Zhou, A. P. Zhang, D. B. Gu, and S. He, “Cladding-mode-recoupling-based tilted fiber Bragg grating sensor with a core-diameter-mismatched fiber section,” IEEE Photon. J. 2, 152–157 (2010). [CrossRef]
  13. K. Zhou, X. Chen, L. Zhang, and I. Bennion, “High-sensitivity optical chemosensor based on etched D-fiber Bragg gratings,” Electron. Lett. 40, 232–233 (2004). [CrossRef]
  14. A. Ladicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Thinned fiber Bragg gratings as refractive index sensors,” IEEE Sens. J. 5, 1288–1294 (2005). [CrossRef]
  15. D. A. Pereira, O. Frazzo, J. L. Santos, and I. P. Uose, “Fiber Bragg grating sensing system for simultaneous measurement of salinity and temperature,” Opt. Eng. 43, 299–304 (2004). [CrossRef]
  16. Y. Lin, W. Tsai, Y. Tsao, and J. Tai, “An enhanced optical multimode fiber sensor based on surface plasmon resonance with cascaded structure,” IEEE Photon. Technol. Lett. 20, 1287–1289 (2008). [CrossRef]
  17. J.-L. Tang and J.-N. Wang, “Chemical sensing sensitivity of long-period grating enhanced by colloidal gold nanoparticles,” Sensors 8, 171–184 (2008). [CrossRef]
  18. G. Nemova and R. Kashyap, “Novel fiber Bragg grating assisted plasmon-polariton for bio-medical refractive index sensors,” J. Mater. Sci. Mater. Electron. 18, 327–330(2007). [CrossRef]
  19. A. W. Snyder and J. D. Love, Optical Waveguide Theory(Chapman & Hall, 1983).
  20. H. Gua and S. Thao, “Silver nanoparticles doped silica nanocomposites coated on optical fiber for ammonia sensing,” Sens. Actuators B 123, 578–582 (2007). [CrossRef]
  21. I. Del Vellar, M. Achaerandio, I. R. Matias, and F. J. Arregui, “Deposition of overlays by electrostatic self-assembly in long-period fiber gratings,” Opt. Lett. 30, 720–722(2005). [CrossRef]
  22. A. Iadicicco, A. Cusano, G. V. Persiano, A. Cutolo, R. Bernini, and M. Fiordano, “Refractive index measurements by fiber Bragg grating sensor,” in Proceedings of IEEE Conference on Sensors (IEEE, 2003), pp. 101–105.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited