OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 32 — Nov. 10, 2011
  • pp: 6049–6056

Optical programmable Boolean logic unit

Tanay Chattopadhyay  »View Author Affiliations


Applied Optics, Vol. 50, Issue 32, pp. 6049-6056 (2011)
http://dx.doi.org/10.1364/AO.50.006049


View Full Text Article

Enhanced HTML    Acrobat PDF (1013 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Logic units are the building blocks of many important computational operations likes arithmetic, multiplexer-demultiplexer, radix conversion, parity checker cum generator, etc. Multifunctional logic operation is very much essential in this respect. Here a programmable Boolean logic unit is proposed that can perform 16 Boolean logical operations from a single optical input according to the programming input without changing the circuit design. This circuit has two outputs. One output is complementary to the other. Hence no loss of data can occur. The circuit is basically designed by a 2 × 2 polarization independent optical cross bar switch. Performance of the proposed circuit has been achieved by doing numerical simulations. The binary logical states ( 0 , 1 ) are represented by the absence of light (null) and presence of light, respectively.

© 2011 Optical Society of America

OCIS Codes
(200.0200) Optics in computing : Optics in computing
(200.3760) Optics in computing : Logic-based optical processing
(200.4660) Optics in computing : Optical logic
(250.3750) Optoelectronics : Optical logic devices

ToC Category:
Optics in Computing

History
Original Manuscript: February 17, 2011
Revised Manuscript: August 18, 2011
Manuscript Accepted: August 26, 2011
Published: November 2, 2011

Citation
Tanay Chattopadhyay, "Optical programmable Boolean logic unit," Appl. Opt. 50, 6049-6056 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-32-6049


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photon. 4, 262–263 (2010). [CrossRef]
  2. R. P. Webb, R. J. Manning, G. D. Maxwell, and A. J. Poustie, “40 Gbit/s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer,” Electron. Lett. 39, 79–81(2003). [CrossRef]
  3. T. Houbavlis, K. E. Zoiros, G. Kanellos, and C. Tsekrekos, “Performance analysis of ultrafast all-optical Boolean XOR gate using semiconductor optical amplifier-based Mach-Zehnder interferometer,” Opt. Commun. 232, 179–199(2004). [CrossRef]
  4. J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “40 Gbit/s XOR and AND gates using polarization switching within 1 m-long bismuth oxide-based nonlinear fiber,” Electron. Lett. 41, 1074–1075 (2005). [CrossRef]
  5. M. Suzuki and H. Uenohara, “Investigation of all-optical error detection circuit using SOA-MZI based XOR gates at 10 Gbit/s,” Electron. Lett. 45, 224–225 (2009). [CrossRef]
  6. J. Wang, Q. Sun, and J. Sun, “Ultrafast all-optical logic AND gate for CSRZ signals using periodically poled lithium niobate,” J. Opt. Soc. Am. B 26, 951–958 (2009). [CrossRef]
  7. A. Bogoni, L. Poti, R. Proietti, G. Meloni, F. Ponzini, and P. Ghelfi, “Regenerative and reconfigurable all-optical logic gates for ultra-fast applications,” Electron. Lett. 41, 435–436(2005). [CrossRef]
  8. Z. Li and G. Li, “Ultrahigh-speed reconfigurable logic gates based on four wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 18, 1341–1343(2006). [CrossRef]
  9. G. Berrettini, S. Simi, A. Malacarne, A. Bogoni, and L. Poti, “Ultra-fast integrable and reconfigurable XOR, AND, NOR and NOT photonic logic gate,” IEEE Photon. Technol. Lett. 18, 917–919 (2006). [CrossRef]
  10. J-Y. Kim, J-M. Kang, T-Y. Kim, and S-K. Han, “All-optical multiple logic gates with XOR, NOR, OR and NAND functions using parallel SOA-MZI structures: theory and experiment,” J. Lightwave Technol. 24, 3392–3399 (2006). [CrossRef]
  11. J. Hardy and J. Shamir, “Optics inspired logic architecture,” Opt. Express 15, 150–165 (2007). [CrossRef] [PubMed]
  12. D. M. F. Lai, C. H. Kwok, and K.K-Y. Wong, “All-optical picoseconds logic gates based on a fiber optical parametric amplifier,” Opt. Express 16, 18362–18370 (2008). [CrossRef] [PubMed]
  13. J. Dong, X. Zhang, and D. Huang, “A proposal for two-input arbitrary Boolean logic gates using single semiconductor optical amplifier by picosecond pulse injection,” Opt. Express 17, 7725–7730 (2009). [CrossRef] [PubMed]
  14. J. Xu, X. Zhang, Y. Zhang, J. Dong, D. Liu, and D. Huang, “Reconfigurable all-optical logic gates for multi-input differential phase-shift keying signals: design and experiments,” J. Lightwave Technol. 22, 5268–5275 (2009).
  15. M. R. Fetterman, “Design for high-speed optoelectronic Boolean logic,” IEEE Photon. Technol. Lett. 21, 1740–1742 (2009). [CrossRef]
  16. J.-M. Jeong and M. E. Marhic, “All-optical logic gates based on cross-phase modulation in a nonlinear fiber interferometer,” Opt. Commun. 85, 430–436 (1991). [CrossRef]
  17. H. J. Caulfield, R. A. Soref, and C. S. Vikram, “Universal reconfigurable optical logic with silicon-on-insulator resonant structures,” Photon. Nanostr. Fundam. Appl. 5, 14–20 (2007). [CrossRef]
  18. H. J. Caulfield, R. A. Soref, L. Qian, and A. Zavalin, “Generalized optical logic elements-GOLEs,” Opt. Commun. 271, 365–373 (2007). [CrossRef]
  19. Z. Y. Shen and L. L. Wu, “Reconfigurable optical logic unit with terahertz optical asymmetric demultiplexer and electro optic switches,” Appl. Opt. 47, 3737–3742 (2008). [CrossRef] [PubMed]
  20. Y. Miyoshi, R. Ikeda, H. Tobioka, T. Inoue, S. Namiki, and K. Kitayama, “Ultrafast all-optical logic gate using a nonlinear optical loop mirror based multi-periodic transfer function,” Opt. Express 16, 2570–2577 (2008). [CrossRef] [PubMed]
  21. H. J. Caulfield, “Zero-energy optical logic: can it be practical?” presented at the Optical Supercomputing, Second International Workshop, Bertinoro, Italy, November 2009.
  22. H. J. Caulfield, “Four barriers to understanding zero energy optical logic,” Phys. Expr. 1, 43–49 (2011).
  23. J. Yang, X. Li, J. Yang, J. Liu, and X. Su, “Polarization-independent bidirectional 4×4 optical switch in free-space,” Opt. Laser Technol. 42, 927–933 (2010). [CrossRef]
  24. R. Tomczuk and D. M. Miller, “Autocorrelation techniques for multi-bit decoder PLAs,” presented at the 22nd International Symposium on Multiple-Valued Logic, Sendai, Japan, 1992. [CrossRef]
  25. T. Sasao, “Multiple-valued decomposition of generalized Boolean functions and the complexity of programmable logic arrays,” IEEE Trans. Comput. C-30, 635–643 (1981). [CrossRef]
  26. T. Sasao, “Input variable assignment and output phase optimization of PLA’s,” IEEE Trans. Comput. C-33, 879–894 (1984). [CrossRef]
  27. G. P. Agrwal, Applications of Nonlinear Fibre Optics(Academic, 2001).
  28. T. Chattopadhyay, “All-optical cross-bar network architecture using TOAD based interferometric switch and using it to design reconfigurable logic unit,” Opt. Fiber Technol. (to be published). [CrossRef]
  29. A. A.-Mejia, K. A. Williams, T. de Vries, S. Smalbrugge, Y. S. Oei, M. K. Smit, and R. N. Nötzel, “Integrated 2×2 quantum dot optical crossbar switch in 1.55 μm wavelength range,” Electron. Lett. 45, 313–314 (2009). [CrossRef]
  30. G. Berrettini, G. Meloni, A. Bogoni, and L. Potì, “All-optical 2×2 switch based on kerr effect in highly nonlinear fiber for ultrafast applications,” IEEE Photon. Technol. Lett. 18, 2439–2441 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited