OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 32 — Nov. 10, 2011
  • pp: 6063–6072

Information-theoretic analysis of a stimulated-Brillouin-scattering-based slow-light system

Myungjun Lee, Yunhui Zhu, Daniel J. Gauthier, Michael E. Gehm, and Mark A. Neifeld  »View Author Affiliations

Applied Optics, Vol. 50, Issue 32, pp. 6063-6072 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (730 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We use an information-theoretic method developed by Neifeld and Lee [ J. Opt. Soc. Am. A 25, C31 (2008)] to analyze the performance of a slow-light system. Slow-light is realized in this system via stimulated Brillouin scattering in a 2 km -long, room-temperature, highly nonlinear fiber pumped by a laser whose spectrum is tailored and broadened to 5 GHz . We compute the information throughput (IT), which quantifies the fraction of information transferred from the source to the receiver and the information delay (ID), which quantifies the delay of a data stream at which the information transfer is largest, for a range of experimental parameters. We also measure the eye-opening (EO) and signal-to-noise ratio (SNR) of the transmitted data stream and find that they scale in a similar fashion to the information-theoretic method. Our experimental findings are compared to a model of the slow-light system that accounts for all pertinent noise sources in the system as well as data-pulse distortion due to the filtering effect of the SBS process. The agreement between our observations and the predictions of our model is very good. Furthermore, we compare measurements of the IT for an optimal flattop gain profile and for a Gaussian-shaped gain profile. For a given pump-beam power, we find that the optimal profile gives a 36% larger ID and somewhat higher IT compared to the Gaussian profile. Specifically, the optimal (Gaussian) profile produces a fractional slow-light ID of 0.94 (0.69) and an IT of 0.86 (0.86) at a pump-beam power of 450 mW and a data rate of 2.5 Gbps . Thus, the optimal profile better utilizes the available pump-beam power, which is often a valuable resource in a system design.

© 2011 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.4510) Fiber optics and optical communications : Optical communications
(190.2640) Nonlinear optics : Stimulated scattering, modulation, etc.
(200.3050) Optics in computing : Information processing
(260.2030) Physical optics : Dispersion
(290.5900) Scattering : Scattering, stimulated Brillouin

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: August 10, 2011
Manuscript Accepted: September 12, 2011
Published: November 3, 2011

Myungjun Lee, Yunhui Zhu, Daniel J. Gauthier, Michael E. Gehm, and Mark A. Neifeld, "Information-theoretic analysis of a stimulated-Brillouin-scattering-based slow-light system," Appl. Opt. 50, 6063-6072 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science 326, 1074–1077 (2009). [CrossRef] [PubMed]
  2. R. S. Tucker, P. C. Ku, and C. J. Chang-Hasnain, “Slow-light optical buffers: capabilities and fundamental limitations,” J. Lightwave Technol. 23, 4046–4066 (2005). [CrossRef]
  3. Z. Bo, L. Yan, J. Yang, I. Fazal, and A. Willner, “A single slow-light element for independent delay control and synchronization on multiple Gb/s data channels,” IEEE Photon. Technol. Lett. 19, 1081–1083 (2007). [CrossRef]
  4. Z. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Slow-light Fourier transform interferometer,” Phys. Rev. Lett. 99, 240801 (2007). [CrossRef]
  5. Z. Shi and R. W. Boyd, “Slow-light interferometry: practical limitations to spectroscopic performance,” J. Opt. Soc. Am. B 25, C136–C143 (2008). [CrossRef]
  6. R. Zhang, Y. Zhu, J. Wang, and D. J. Gauthier, “Slow light with a swept-frequency source,” Opt. Express 18, 27263–27269(2010). [CrossRef]
  7. A. Schweinsberg, Z. Shi, J. E. Vornehm, and R. W. Boyd, “Demonstration of a slow-light laser radar,” Opt. Express 19, 15760–15769 (2011). [CrossRef] [PubMed]
  8. M. Gonzalez-Herraez, K. Song, and L. Thévenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87, 081113 (2005). [CrossRef]
  9. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005). [CrossRef] [PubMed]
  10. Z. Zhu, D. J. Gauthier, Y. Okawachi, J. E. Sharping, A. L. Gaeta, R. W. Boyd, and A. E. Willner, “Numerical study of all-optical slow-light delays via stimulated Brillouin scattering in an optical fiber,” J. Opt. Soc. Am. B 22, 2378–2384 (2005). [CrossRef]
  11. M. D. Stenner, M. A. Neifeld, Z. Zhu, A. M. C. Dawes, and D. J. Gauthier, “Distortion management in slow-light pulse delay,” Opt. Express 13, 9995–10002 (2005). [CrossRef] [PubMed]
  12. A. Minardo, R. Bernini, and L. Zeni, “Low distortion Brillouin slow light in optical fibers using AM modulation,” Opt. Express 14, 5866–5876 (2006). [CrossRef] [PubMed]
  13. A. Zadok, A. Eyal, and M. Tur, “Extended delay of broadband signals in stimulated Brillouin scattering slow light using synthesized pump chirp,” Opt. Express 14, 8498–8505 (2006). [CrossRef] [PubMed]
  14. T. Schneider, M. Junker, and K.-U. Lauterbach, “Potential ultra wide slow-light bandwidth enhancement,” Opt. Express 14, 11082–11087 (2006). [CrossRef] [PubMed]
  15. Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “Broadband SBS Slow Light in an Optical Fiber,” J. Lightwave Technol. 25, 201–206 (2007). [CrossRef]
  16. Z. Shi, R. Pant, Z. Zhu, M. D. Stenner, M. A. Neifeld, D. J. Gauthier, and R. W. Boyd, “Design of a tunable time-delay element using multiple gain lines for large fractional delay with high data fidelity,” Opt. Lett. 32, 1986–1988 (2007). [CrossRef] [PubMed]
  17. L. Yi, Y. Jaouen, W. Hu, Y. Su, and S. Bigo, “Improved slow-light performance of 10 Gb/s NRZ, PSBT and DPSK signals in fiber broadband SBS,” Opt. Express 15, 16972–16979(2007). [CrossRef] [PubMed]
  18. Z. Lu, Y. Dong, and Q. Li, “Slow light in multi-line Brillouin gain spectrum,” Opt. Express 15, 1871–1877 (2007). [CrossRef] [PubMed]
  19. R. Pant, M. D. Stenner, M. A. Neifeld, and D. J. Gauthier, “Optimal pump profile designs for broadband SBS slow-light systems,” Opt. Express 16, 2764–2777 (2008). [CrossRef] [PubMed]
  20. E. Cabrera-Granado, O. G. Calderon, S. Melle, and D. J. Gauthier, “Observation of large 10 Gb/s SBS slow light delay with low distortion using an optimized gain profile,” Opt. Express 16, 16032–16042 (2008). [CrossRef] [PubMed]
  21. T. Sakamoto, T. Yamamoto, K. Shiraki, and T. Kurashima, “Low distortion slow light in flat Brillouin gain spectrum by using optical frequency comb,” Opt. Express 16, 8026–8032(2008). [CrossRef] [PubMed]
  22. Y. Dong, Z. Lu, Q. Li, and Y. Liu, “Broadband Brillouin slow light based on multifrequency phase modulation in optical fibers,” J. Opt. Soc. Am. B 25, C109–C115 (2008). [CrossRef]
  23. M. Lee, R. Pant, and M. A. Neifeld, “Improved delay performance of broadband stimulated Brillouin Scattering (SBS) slow-light system using fiber Bragg gratings,” Appl. Opt. 47, 6404–6415 (2008). [CrossRef] [PubMed]
  24. Z. Zhang, X. Zhou, R. Liang, and S. Shi, “Influence of third-order dispersion on delay performance in broadband Brillouin slow light,” J. Opt. Soc. Am. B 26, 2211–2217 (2009). [CrossRef]
  25. S. Chin, M. Gonzalez-Herraez, and L. Thévenaz, “Complete compensation of pulse broadening in an amplifier-based slow light system using a nonlinear regeneration element,” Opt. Express 17, 21910–21917 (2009). [CrossRef] [PubMed]
  26. Y. Zhu, M. Lee, M. A. Neifeld, and D. J. Gauthier, “High-fidelity broadband stimulated-Brillouin-scattering-based slow light using fast noise modulation,” Opt. Express 19, 687–697(2011). [CrossRef] [PubMed]
  27. R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, “Erratum: Maximum time delay achievable on propagation through a slow-light medium,” Phys. Rev. A 72, 059903(2005). [CrossRef]
  28. J. B. Khurgin, “Performance limits of delay lines based on optical amplifiers,” Opt. Lett. 31, 948–950 (2006). [CrossRef] [PubMed]
  29. D. A. B. Miller, “Fundamental limit to linear one-dimensional slow light structures,” Phys. Rev. Lett. 99, 203903 (2007). [CrossRef]
  30. M. A. Neifeld and M. Lee, “Information theoretic framework for the analysis of a slow-light delay device,” J. Opt. Soc. Am. B 25, C31–C38 (2008). [CrossRef]
  31. C. E. Shannon, “A mathematical theory of communications,” Bell Syst. Tech. J. 27, 379–423 (1948).
  32. B. Zhang, L. Yan, I. Fazal, L. Zhang, A. E. Willner, Z. Zhu, and D. J. Gauthier, “Slow light on Gbit/s differential-phase-shift-keying signals,” Opt. Express 15, 1878–1883 (2007). [CrossRef] [PubMed]
  33. G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley, 2002). [CrossRef]
  34. Z. Zuqing, M. Funabashi, P. Zhong, X. Bo, L. Paraschis, and S. J. B. Yoo, “Jitter and amplitude noise accumulations in cascaded all-optical regenerators,” J. Lightwave Technol. 26, 1640–1652 (2008). [CrossRef]
  35. J. D. Fast, Entropy. The Significance of the Concept of Entropy and Its Applications in the Science and Technology (McGraw-Hill, 1962). [PubMed]
  36. S. Le Floch and P. Cambon, “Theoretical evaluation of the Brillouin threshold and the steady-state Brillouin equations in standard single-mode optical fibers,” J. Opt. Soc. Am. A 20, 1132–1137 (2003). [CrossRef]
  37. Y. Zhu, E. Cabrera-Granado, O. G. Calderon, S. Melle, Y. Okawachi, A. L. Gaeta, and D. J. Gauthier, “Competition between the Modulation Instability and Stimulated Brillouin Scattering in a Broadband Slow Light Device,” J. Opt. 12, 104019 (2010). [CrossRef]
  38. R. Holzlohner, H. N. Ereifej, V. S. Grigoryan, G. M. Carter, and C. R. Menyuk, “Experimental and theoretical characterization of a 40 Gb/s long-haul single-channel transmission system,” J. Lightwave Technol. 20, 1124–1131 (2002). [CrossRef]
  39. S. Norimatsu and M. Maruoka, “Accurate Q-factor estimation of optically amplified systems in the presence of waveform distortions,” J. Lightwave Technol. 20, 19–27 (2002). [CrossRef]
  40. R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514–5521(1990). [CrossRef] [PubMed]
  41. S. Sternklar, Y. Glick, and S. Jackel, “Noise limitations of Brillouin two-beam coupling: theory and experiment,” J. Opt. Soc. Am. B 9, 391–394 (1992). [CrossRef]
  42. N. A. Olsson, “Lightwave systems with optical amplifiers,” J. Lightwave Technol. 7, 1071–1082 (1989). [CrossRef]
  43. A. Ghosh, D. Venkitesh, and R. Vijaya, “Study of Brillouin amplifier characteristics toward optimized conditions for slow light generation,” Appl. Opt. 48, G48–G52 (2009). [CrossRef] [PubMed]
  44. F. Ravet, X. Bao, J. Snoddy, Y. Li, and L. Chen, “Characterization of Brillouin fiber generator and amplifier for optimized working condition of distributed sensors,” Opt. Fiber Technol. 15, 304–309 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited