OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 32 — Nov. 10, 2011
  • pp: 6098–6102

Evolution process from ghost diffraction to ghost imaging in a lensless imaging system

Yanfeng Bai, Haiyan Gao, Taigang Liu, Teng Qiu, and Haiqing Zhou  »View Author Affiliations

Applied Optics, Vol. 50, Issue 32, pp. 6098-6102 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (198 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Ghost diffraction and ghost imaging are investigated in a lensless imaging system. The evolution process from ghost diffraction to ghost imaging is discussed when the object is moved far away from the source in the test arm. The relation of ghost diffraction and imaging is also studied, and it is found that the visibility of ghost imaging is always better than that of ghost diffraction.

© 2011 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(100.2960) Image processing : Image analysis
(110.1650) Imaging systems : Coherence imaging

ToC Category:
Imaging Systems

Original Manuscript: June 27, 2011
Revised Manuscript: August 23, 2011
Manuscript Accepted: August 23, 2011
Published: November 7, 2011

Yanfeng Bai, Haiyan Gao, Taigang Liu, Teng Qiu, and Haiqing Zhou, "Evolution process from ghost diffraction to ghost imaging in a lensless imaging system," Appl. Opt. 50, 6098-6102 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995). [CrossRef] [PubMed]
  2. D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon ghost interference and diffraction,” Phys. Rev. Lett. 74, 3600–3603 (1995). [CrossRef] [PubMed]
  3. R. S. Bennink, S. J. Bentley, and R. W. Boyd, “‘Two-photon coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002). [CrossRef] [PubMed]
  4. A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A 70, 013802 (2004). [CrossRef]
  5. Y. J. Cai and S. Y. Zhu, “Second-order fractional Fourier transform with incoherent radiation,” Opt. Lett. 30, 388–390(2005). [CrossRef] [PubMed]
  6. D. Z. Cao, J. Xiong, and K. G. Wang, “Geometrical optics in correlated imaging systems,” Phys. Rev. A 71, 013801 (2005). [CrossRef]
  7. J. Cheng and S. S. Han, “Incoherent coincidence imaging and its applicability in x-ray diffraction,” Phys. Rev. Lett. 92, 093903 (2004). [CrossRef] [PubMed]
  8. G. Scarcelli, V. Berardi, and Y. H. Shih, “Phase-conjugate mirror via two-photon thermal light imaging,” Appl. Phys. Lett. 88, 061106 (2006). [CrossRef]
  9. R. Meyers, K. S. Deacon, and Y. H. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 041801 (2008). [CrossRef]
  10. K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “Two-color ghost imaging,” Phys. Rev. A 79, 033808 (2009). [CrossRef]
  11. P. Zhang, W. Gong, X. Shen, D. Huang, and S. Han, “Improving resolution by the second-order correlation of light fields,” Opt. Lett. 34, 1222–1224 (2009). [CrossRef] [PubMed]
  12. W. Gong, P. Zhang, X. Shen, and S. Han, “Ghost ‘pinhole’ imaging in Fraunhofer region,” Appl. Phys. Lett. 95, 071110(2009). [CrossRef]
  13. D. S. Simon and A. V. Sergienko, “Odd-order aberration cancellation in correlated-photon imaging,” Phys. Rev. A 82, 023819 (2010). [CrossRef]
  14. Y. F. Bai and S. S. Han, “Ghost imaging with thermal light by third-order correlation,” Phys. Rev. A 76, 043828 (2007). [CrossRef]
  15. D. Z. Cao, J. Xiong, S. H. Zhang, L. F. Lin, L. Gao, and K. G. Wang, “Enhancing visibility and resolution in Nth-order intensity correlation of thermal light,” Appl. Phys. Lett. 92, 201102 (2008). [CrossRef]
  16. Q. Liu, X. H. Chen, K. H. Luo, W. Wu, and L. A. Wu, “Role of multiphoton bunching in high-order ghost imaging with thermal light sources,” Phys. Rev. A 79, 053844 (2009). [CrossRef]
  17. K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “High-order thermal ghost imaging,” Opt. Lett. 34, 3343–3345 (2009). [CrossRef] [PubMed]
  18. B. Cao and C. Zhang, “Third-order lensless ghost diffraction with classical fully incoherent light,” Opt. Lett. 35, 2091–2093 (2010). [CrossRef] [PubMed]
  19. M. Zhang, Q. Wei, X. Shen, Y. F. Liu, H. L. Liu, J. Cheng, and S. S. Han, “Lensless Fourier-transform ghost imaging with classical incoherent light,” Phys. Rev. A 75, 021803 (2007). [CrossRef]
  20. Y. Cai and S. Y. Zhu, “Ghost interference with partially coherent radiation,” Opt. Lett. 29, 2716–2718 (2004). [CrossRef] [PubMed]
  21. I. Vidal, D. P. Caetano, E. J. S. Fonseca, and J. M. Hickmann, “Effects of pseudothermal light source’s transverse size and coherence width in ghost-interference experiments,” Opt. Lett. 34, 1450–1452 (2009). [CrossRef] [PubMed]
  22. N. S. Bisht, E. K. Sharma, and H. C. Kandpal, “The influence of source and object characteristics on coincidence imaging,” J. Opt. 12, 045701 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited