OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 32 — Nov. 10, 2011
  • pp: 6103–6120

Analytical approach to thermal lensing in end-pumped Yb:YAG thin-disk laser

Jianli Shang, Xiao Zhu, and Guangzhi Zhu  »View Author Affiliations


Applied Optics, Vol. 50, Issue 32, pp. 6103-6120 (2011)
http://dx.doi.org/10.1364/AO.50.006103


View Full Text Article

Enhanced HTML    Acrobat PDF (2539 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Thermal lensing in the thin-disk laser influences the output beam quality and optical efficiency significantly. In this paper, an analytical approach is taken to study the production mechanisms, features, and influences of thermal lensing in the end-pumped thin-disk laser. We calculate the distributions of temperature, stress, strain, and expansion in the disk and the curvature of the crystal using an analytic method. The expressions of the thermal lens focal length depending on the radius are presented. The optical path difference, a major cause of thermal lensing, is induced by the thermo-optical effect, the photoelastic effect, and inhomogeneous distribution of thermal expansion and the excited population. Thermal lensing is found to be aspheric with undesired aberrations and birefringence effects. Furthermore, a convex mirror due to the axial temperature gradient occurs in a free disk, and the convex mirror is found to be spherical in the center region of the disk. Based on the results of our analysis, the aspect ratio and size of the laser mode of the gain region may be adjusted to limit the damaging effects of thermal lensing.

© 2011 Optical Society of America

OCIS Codes
(140.3580) Lasers and laser optics : Lasers, solid-state
(350.6830) Other areas of optics : Thermal lensing

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: May 10, 2011
Revised Manuscript: September 19, 2011
Manuscript Accepted: September 23, 2011
Published: November 8, 2011

Citation
Jianli Shang, Xiao Zhu, and Guangzhi Zhu, "Analytical approach to thermal lensing in end-pumped Yb:YAG thin-disk laser," Appl. Opt. 50, 6103-6120 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-32-6103


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Giesen and J. Speiser, “Fifteen years of work on thin-disk laser: result and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13, 598–609 (2007). [CrossRef]
  2. C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1 kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6, 650–657 (2000). [CrossRef]
  3. A. Giesen, “Results and scaling laws of thin disk lasers,” Proc. SPIE 5332, 202–227 (2004). [CrossRef]
  4. A. Giesen, “Thin-disk solid-state lasers,” Proc. SPIE 5620, 112–127 (2004). [CrossRef]
  5. A. Killi, I. Zawischa, D. Sutter, J. Kleinbauer, S. Schad, J. Neuhaus, and C. Schmitz, “Current status and development trends of disk laser technology,” Proc. SPIE 6871, 68710L(2008). [CrossRef]
  6. J. Speiser and A. Giesen, “Numerical modeling of high power continuous-wave Yb:YAG thin disk lasers, scaling to 14 kW,” in Advanced Solid-State Photonics, OSA Technical DigestSeries (CD) (Optical Society of America, 2007), paper WB9.
  7. J. Deile, R. Brockmann, and D. Havrilla, “Current status and most recent developments of industrial high power disk lasers,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CThA4.
  8. J. Mende, J. Speiser, G. Spindler, W. L. Bohn, and A. Giesen, “Mode dynamics and thermal lens effects of thin-disk lasers,” Proc. SPIE 6871, 68710M (2008). [CrossRef]
  9. B. Weichelt, D. Blazquez-Sanchez, A. Austerschulte, A. Voss, T. Graf, and A. Killi, “Improving the brightness of a multi-kW thin disk laser with a single disk by an aspherical phase-front correction,” Proc. SPIE 7721, 77210M (2010). [CrossRef]
  10. J. Mende, G. Spindler, E. Schmid, J. Speiser, and A. Giesen, “Thin-disk lasers with dynamically stable resonators,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper WB19.
  11. A. K. Jafari and M. Aas, “Continuous-wave theory of Yb:YAG end pumped thin-disk lasers,” Appl. Opt. 48, 106–113(2009). [CrossRef]
  12. M. J. Dashcasan, F. Hajiesmaeilbaigi, H. Razzaghi, M. Mahdizadeh, and M. Moghadam, “Optimizing the Yb:YAG thin disc laser design parameters,” Opt. Commun. 281, 4753–4757 (2008). [CrossRef]
  13. C. Tang, C. L. Yang, and J. Chen, “Design of diode-pumped 10 kW high-power Nd: YAG disc laser,” Proc. SPIE 5120, 509–512 (2003). [CrossRef]
  14. M. Karszewski, S. Erhard, A. Giesen, and T. Rupp, “Efficient high power TEM00 mode operation of diode-pumped Yb:YAG thin disk lasers,” in Advanced Solid State Lasers, OSA Technical Digest Series (Optical Society of America, 2000), paper WE4.
  15. V. Sazegari, M. R. J. Milani, and A. K. Jafari, “Structural and optical behavior due to thermal effects in end-pumped Yb:YAG disk lasers,” Appl. Opt. 49, 6910–6916 (2010). [CrossRef] [PubMed]
  16. H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 105–116 (1997). [CrossRef]
  17. X. Xu, Z. Zhao, P. Song, G. Zhou, J. Xu, and P. Deng, “Structural, thermal, and luminescent properties of Yb-doped Y3Al5O12 crystals,” J. Opt. Soc. Am. B 21, 543–547 (2004). [CrossRef]
  18. S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “Review: on thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron. 30, 89–153 (2006). [CrossRef]
  19. W. Koechner, Solid-State Laser Engineering, 6th ed.(Springer, 2006).
  20. C. Sebastien, D. Frederic, F. Sebastien, B. Francois, and G. Patrick, “On thermal effects in solid state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron. 3, 89–126 (2006). [CrossRef]
  21. O. L. Antipov, D. V. Bredikhin, O. N. Eremeykin, A. P. Savikin, E. V. Ivakin, and A. V. Sukhadolau, “Electronic mechanism for refractive-index changes in intensively pumped Yb:YAG laser crystals,” Opt. Lett. 31, 763–765 (2006). [CrossRef] [PubMed]
  22. A. K. Cousins, “Temperature and thermal stress scaling in finite-length end-pumped laser rods,” IEEE J. Quantum Electron. 28, 1057–1069 (1992). [CrossRef]
  23. S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, 3rd ed. (Intext Educational, 1973).
  24. B. A. Boly and J. H. Weiner, Theory of Thermal Stresses(Wiley, 1960).
  25. W. Koechner and D. K. Rice, “Effect of birefringence on the performance of linearly polarized YAG:Nd lasers,” IEEE J. Quantum Electron. 6, 557–566 (1970). [CrossRef]
  26. A. Ito, Y. Kozawa, and S. Sato, “Selective oscillation of radially and azimuthally polarized laser beam induced by thermal birefringence and lensing,” J. Opt. Soc. Am. B 26, 708–712(2009). [CrossRef]
  27. E. Anashkina and O. Antipov, “Electronic (population) lensing versus thermal lensing in Yb:YAG and Nd:YAG laser rods and disks,” J. Opt. Soc. Am. B 27, 363–369 (2010). [CrossRef]
  28. J. Speiser, “Scaling of thin-disk lasers—influence of amplified spontaneous emission,” J. Opt. Soc. Am. B 26, 26–35 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited