OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 33 — Nov. 20, 2011
  • pp: 6234–6238

Dynamic behavior of postfilamentation Raman pulses

Jean-François Daigle, Tie-Jun Wang, Sima Hosseini, Shuai Yuan, Gilles Roy, and See Leang Chin  »View Author Affiliations

Applied Optics, Vol. 50, Issue 33, pp. 6234-6238 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (412 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the postfilamentation behavior of a Stokes pulse created from intense and collimated ultrashort pulses propagating in air. A systematic analysis of the pulse propagation revealed that the redshifted Raman pulse produced during filamentation had a larger divergence than the postfilamentation intense pump pulse. Also, the analysis of the far-field Stokes transverse ring revealed that the intensity in this ionization-free light channel is still sufficiently high to induce stimulated Raman scattering after ionization had ended. This behavior further extends the potential of filamentation to remotely induce third-order nonlinearities.

© 2011 Optical Society of America

OCIS Codes
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(190.5940) Nonlinear optics : Self-action effects
(260.5950) Physical optics : Self-focusing

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: June 2, 2011
Manuscript Accepted: August 8, 2011
Published: November 16, 2011

Jean-François Daigle, Tie-Jun Wang, Sima Hosseini, Shuai Yuan, Gilles Roy, and See Leang Chin, "Dynamic behavior of postfilamentation Raman pulses," Appl. Opt. 50, 6234-6238 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007). [CrossRef]
  2. L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70, 1633–1713 (2007). [CrossRef]
  3. V. P. Kandidov, S. A. Shlenov, and O. G. Kosareva, “Filamentation of high-power femtosecond laser radiation,” Quantum Electron. 39, 205–228 (2009). [CrossRef]
  4. S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83, 863–905 (2005). [CrossRef]
  5. J. Kasparian and J.-P. Wolf, “Physics and applications of atmospheric nonlinear optics and filamentation,” Opt. Express 16, 466–493 (2008). [CrossRef] [PubMed]
  6. S. L. Chin, Femtosecond Laser Filamentation (Springer-Verlag, 2010). [CrossRef]
  7. W. Liu and S. L. Chin, “Direct measurement of the critical power of femtosecond Ti:sapphire laser pulse in air,” Opt. Express 13, 5750–5755 (2005). [CrossRef] [PubMed]
  8. G. Méchain, C. D’Amico, Y.-B. André, S. Tzortzakis, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, E. Salmon, and R. Sauerbrey, “Range of plasma filaments created in air by a multi-terawatt femtosecond laser,” Opt. Commun. 247, 171–180(2005). [CrossRef]
  9. J. Kasparian, R. Sauerbrey, and S. L. Chin, “The critical laser intensity of self-guided light filaments in air,” Appl. Phys. B 71, 877–879 (2000). [CrossRef]
  10. A. Becker, N. Akozbek, K. Vijayalakshmi, E. Oral, C. M. Bowden, and S. L. Chin, “Intensity clamping and re-focusing of intense femtosecond laser pulses in nitrogen molecular gas,” Appl. Phys. B 73, 287–290 (2001). [CrossRef]
  11. G. Méchain, A. Couairon, Y.-B. André, C. D’Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization,” Appl. Phys. B 79, 379–382 (2004). [CrossRef]
  12. J.-F. Daigle, O. Kosareva, N. Panov, T.-J. Wang, S. Hosseini, S. Yuan, G. Roy, and S. L. Chin, “Formation and evolution of intense, post-filamentation, ionization-free low divergence beams,” Opt. Commun. 284, 3601–3606 (2011). [CrossRef]
  13. F. Théberge, N. Aközbek, W. Liu, A. Becker, and S. L. Chin, “Tunable ultrashort laser pulses generated through filamentation in gases,” Phys. Rev. Lett. 97, 023904 (2006). [CrossRef] [PubMed]
  14. D. J. Cook and R. M. Hochstrasser, “Intense terahertz pulses by four-wave rectification in air,” Opt. Lett. 25, 1210–1212(2000). [CrossRef]
  15. J. R. Peñano, P. Sprangle, P. Serafim, B. Hafizi, and A. Ting, “Stimulated Raman scattering of intense laser pulses in air,” Phys. Rev. E 68, 056502 (2000). [CrossRef]
  16. J. R. Peñano, P. Sprangle, B. Hafizi, A. Ting, D. F. Gordon, and C. A. Kapetanakos, “Propagation of ultra-short, intense laser pulses in air,” Phys. Plasmas 11, 2865–2874 (2004). [CrossRef]
  17. A. M. Zheltikov, “Raman response function of atmospheric air,” Opt. Lett. 32, 2052–2054 (2007). [CrossRef] [PubMed]
  18. D. Faccio, A. Dubietis, G. Tamosauskas, P. Polesana, G. Valiulis, A. Piskarskas, A. Lotti, A. Couairon, and P. Di Trapani, “Phase- and group-matched nonlinear interactions mediated by multiple filamentation in Kerr media,” Phys. Rev. A 76, 055802 (2007). [CrossRef]
  19. W. Liu and S. L. Chin, “Abnormal wavelength dependence of the self-cleaning phenomenon during femtosecond-laser-pulse filamentation,” Phys. Rev. A 76, 013826 (2007). [CrossRef]
  20. Y. Chen, F. Théberge, C. Marceau, H. Xu, N. Aközbek, O. Kosareva, and S. L. Chin, “Observation of filamentation-induced continuous self-frequency down shift in air,” Appl. Phys. B 91, 219–222 (2008). [CrossRef]
  21. L. Wöste, C. Wedekind, H. Wille, P. Rairoux, B. Stein, S. Nikolov, C. Werner, S. Niedermeier, F. Ronneberger, H. Schillinger, and R. Sauerbrey, “Femtosecond atmospheric lamp,” Laser Und Optoelektronik 29, 51–53 (1997).
  22. S. L. Chin, F. Théberge, and W. Liu, “Filamentation nonlinear optics,” Appl. Phys. B 86, 477–483 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited